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Abstract 

 

The main theme of this work can divided in main aspects: 

First, We modify some theorems to ensure: the existence and 

uniqueness of the solution for the Lyapunov and Quasi - Lyapunov 

operator equations. As well as we study and discuss the existence . 

and uniqueness of the solution of the discrete-time, Sylvester and 

Lyapounv operator equations. 

Second, the range of he Quasi - Lyapunov equation is studied and , 

we study the nature Discrete - tithe as well as, the study of the range 

τAB and τA are introduce. 

 

Third the nature of the solution for the Lyapunov and Quasi - 

Lyapunov operators (Continuous - time) are studied for special -

types of operators. 

Also, we study the nature solution and the range of the generalization 

continuous - tithe Lyapuriov operator equations. 
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TABLE OF NOTATIONS 

IR The field of real numbers 

C  The field of complex numbers 

H Infinite dimensional complex - separable Hilbert space 

B (H) The Ban ach algebra of all bounded linear Operators On a 

Hilbert space H. 

σ (A) The spectrum of the operator A.  

Range (A). The range of the operator A. 

< , >  Inner product. 

||X|| Norm of X. 

A*  The adjoint of the operator. 

F     The filed 

R   The ring 

ker (x) The kernel of The operator X 

A-1 The inverse of the operator A 

{Xn} The sequence of vector . 

I      Identity operator . 
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Introduction : 

Thu Lyaptinon operator equation are of two types . The first type is 

continuous - time Lyapunov operator equation which takes the from 

A*X + XA = W , where A and W are known operators defined on a 

Hilbert space H , X is the known operator that must be determined , 

[3] , and [5] . 

The second type is discrete - time Lyapunoy operator equation which 

takes A*XA – X = W , where A and W are known operators defined 

on a Hilbert space H , and X is the unknown operators. that must be 

determined , [5]  .  

This work concern with special types of the linear operator equation 

namely  the Qusai - Lyapunov operator equation  .  

These types of linear operator equations have many real life 

applications in physics  biotechnology , [3] and [4] . This work is 

study. of the nature of solution foe the linear Lyapunov, and Qusai - 

Lyapunov operator equations  .  

This thesis consist of five chapters in chapter one , we recall some 

definitions basic concept and some properties which are important for 

the discussion of our later results 

 In Chapter two we give some modifications for Selvester - 

Rosenblum theorem to guarantee the existence and uniqueness foe the 

solution of discrete - time Lyapunov equation - as well as the natural 

of the solution for this equation operators studied . 
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In Chapter three we study the nature of the solution of the continuous 

– time Lyapunov and Qnsai - Lyapunov operator equations for special 

types of operators as well  as the study of the range of τA , τAB and µA . 

where : 

τA (X) = A* X + XA . 

Al (X) = AX + X*A  

µA (X) = AX + XA 

X  B(H) and A is a fixed operator in H . 

In Chapter four , we discuss the nature of solution for generalization 

of continuous - time Lyapunove operator equations. 

In Chapter five , we study and discuss the range of the generalization 

of continuous - time Lyaponove operator equations. 
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Chapter One 

Basic Operators Concepts 
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 CHAPTER ONE 

BASIC OPERATORS CONCEPTS 

(1.1) Basic Definitions:  

 In this section, we give some definitions which are important for 

the .study of our later results. 

Definition (1.1.1), [11] :  

Let V be a vector space real or complex then V is called a normed 

space if there is a norm function ||.|| : V → R defined on it, and if this 

space is complete with respect to this norm, then it is called a Banach 

space, thus a Banach is a complete normed vector space. 

Definition (1.1.2) [11]:  

A Banach space V is called a Banach algebra if there is a 

multiplication <u, v> = uv :VxV which is linear each factor in 

particular is a ring (not necessary communicative) and ||uv|| ≤ || ||v|| all 

u , v in V . 

 



 10

Definition (1.1.3) [11]:  

The space V is called an inner product space if there is an inner 

function <…> : V x V → R or C defined on it. If this space is 

complete with respect to the norm induced by this inner product, then 

it is called a Hilbert space. 

Definition (1.1.4) , [10] :  

Let X and Y be vector spaces. A map B:X → Y is called a linear 

operator (map) if 

B(λx + µz) = λBx + µBz , ∀  x , z  X and Vλ , µ  F . 

Definitions (1.1.5) , [5]:  

An equation of the form 

L(X) = W, ……………………………    (1-1) 

is said to be an operator equation, where L and W are known 

operators defined on a Hilbert space H, and X is the unknown 

operator that must be determined. 

In equation (1-1), if the operator L is linear then this equation is said 

to be linear operator equation. Otherwise, it is a non-linear operator 

equation. 
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Definition (1.1,6), [7] :  

 An operator A on a Hilbert space H is said to be self - adjoint if 

A* = A . 

 

Definition (1.1.7) [7]:  

 An operator . A on Hilbert space H is said to be a skew – adjoint 

if A* = - A . 

Definition (1.1.8), [7]:  

 An operator A on a Hilbert space H is said to be normal if 

A*A=AA*. That is, <A*Ax, x> = <AA*x, x> for all x i n H. 

Definition (1.1.9), [7]:  

An operator A on a Hilbert space H is said to be hyponormal if A*A - 

AA* ≥  0. i.e., 

<(A*A - AA*) x, x> ≥ 0 ∀ x  H. 

Definition (1.1.10), [7]:  

An operator A on a Hithert space H is said to be * - paranormal if 

||A2x|| ≥ || A*x || , for every unit vector x in H. Equivalently A is * - 

paranormal if ||A2x || ||x || ≥  ||A*x||2  for every x in H. 
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Definition (1.1.11), [7] : 

 An operator A on a Hilbert space is said to be binormal if A*A 

commutive with AA*. i.e., 

A*AAA* = AA*A*A .  

Definition (1.1.12), [7] : 

 An operator on a Hilbert space H is said to be quasinormal if A 

commutive A*A. i.e., 

AA*A = A*AA, 

 

Definition (1.1.13), [7]: 

An operator A on a Hilbert space H is called Ө - operator if A*A 

commutive with (A + A*). i.e., 

A*A (A + A*) = (A + A*) A A*. 

Definition (1.1.14), [17]:  

If B(H) is a Banach algebra with identity and A  B(H), the 

spectrum of a, denoted by σ (A), is defined by: 

σ (A) = { σ  : A - αI is not invertible }. 

The left spectrum , 
l

σ (A) , is the set 

{α  F: A – αI is not left invertible}, the right spectrum 

σr (A) , is the set {α  F : A - αI is not right invertible }. 
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Definition (1.1.15), [15]:  

Let X be a Banach space over C , and let A  B(H), defined 

σπ (A) = {λ  C : A - λI is not bounded below} 

σπ (A) is called the approximate point spectrum of A. An important 

subset of 

σπ (A) is the point spectrum or eigenvalues of A, σp(A) 

where: σp (A)= {λ  C : ker (A - λI) ∨ {0}} 

Also, defined σδ (A) = {λ   C : ker (A - λI is not surjecrive}, σδ (A) is 

called the defect spectrum of A . 

 

Definition (L1.16), [7]:  

An operator A on a Hilbert space His said to be compact if, given any 

sequence of :vectors {x,}. such that ||Xn|| is bounded, {AXn}, has a 

convergent subsequence. 

 

Definition (1.1.17), [2]:  
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A linear mapping τ from a ring R to itself is called a 

derivation, if τ (ab) = a τ (b) + τ (a)b for all a, b in R. 

Definition (1.1.18), [2]:  

Let R be a ring, a Jordan derivation f : R → R is defined to be an 

additive mapping satisfying f(a2)= af(a) + f(a)a . Now, let R be *- ring, 

i.e., a ring with involution *. 

Definition (1.1.19), [2]1:  

A linear mapping T : R  → R is called Jordan *- derivation, if for all 

a, b  R and τ(a2) = a τ + τ (a)a*. If R is a ring with the trivial 

involution, a* = a, then the set of all Jordan derivation is equal to set 

of all Jordan derivations. 

Definition (1.1.20), [7]:  

An operator A on a Hilbert space H is said to be isometric if A*A = I, 

that is ||Ax|| = ||x|| , for all x in a Hilbert space H. 

 

 

 

(1.2) Basic Properties and Theorems :  



 15

In this section, we give examples and elementary properties and 

theorems of operator. 

Proposition (1.2.1), [9]1:  

1. If A is a Heimetian (self - adjoint) operator that is, A = A*, then A 

is normal. 

2. If U is a unitary operator, that is, U*U= UU* = I, then U is normal. 

3. If A is a skew - Hermition (skew - adjoint), that is, A* = - A, then 

A is normal .  

Note that, the converses of statements (1), (2), and (3) 

Example (1.2.1):  

Let I : H 
→ H be the identity operator on a Hilbert space H., and 

A=2iI. Therefore, A* = -2iI Hence, A*A =AA* . This is normal 

operator, but it is not self - adjoint, since A ∨ A*. Also, A is not 

unitary operator because A*A = AA*  ∨ I. 

Example (1.2.2): 

As for (3) in proposition (1.2.1), let 

A = 








12

21  one can get A* = 








12

21  



 16

 

Hence A*A = AA* and A is normal, but A is not a skew - adjoint 

 

Proposition (1.2.2), [1]:  

Let A be an operator on a Hilbert space H, then the following 

statements are equivalent: 

1. A is normal. 

2. ||Ax|| = ||A*x||  for all x in a Hilbert space H. 

Proposition (1.2.3), [8]:  

1. A is normal operator if and only if A - λI is normal for each λ in C . 

2. If A is normal and A-1 exists, then A-1 is normal. 

3. Let A and B be normal operators, then AB is normal if AB* = B*A. 

4. Let A and B be normal operators, then A + B is normal if AB* 

= B* A . 

 

 

Theorem (1.2.1), [8]:  
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If σ(A) ∩ (-A) = Φ , then A and A2 commute with exactly the same 

operators. 

 

Remark (1.2.1),[8]:  

Note that if σ(A) ∩ σ (-A) ∨ Φ , then theorem (1.2.1) may not hold. 

Example (1.2.3):  

Let A= 








01

10
 and B= 









11

10  . It is easy checked that: 

A2B = BA2, , (A) = {1 , 1} and σ (-A) = {-1, 1}, therefore 

σ (A) ∩ σ (-A) ∨ Φ , but A does not commute with B. 

Now we give the following corollary that was mentioned as remark 

(1.2.1). 

Corollary(1.2.1),[8]:  

If A 2 is normal and σ (A) ∩ σ (-A) = Φ , then .A is normal. 

 

Proof:  
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Since A2 is normal and commutes with A, then A*A2 = A2A*. Since  

σ (A) ∩ σ (-A) = Φ, then by theorem (1.2.1), A*A = AA* and A is 

normal. 

Proposition (1.2.4),[12]:  

Let A be an operator on a Hilbert space H. Then, the following 

statements are equivalent: 

1. A is hyponormal. 

2. ||A*x|| ≤ ||Ax|| ∀  x  H. 

Proposition (1.2.5), [12]:  

Let A be a hyponomial operator, then : 

1- A - λI is hyponormal for all λ in C . 

2. If A-1 exists, then A-1 is hyponormal. 

Proposition (1.2.6), [12]:  

Every nonzero hyponormal operator compact operator is normal. 

Remark (1.2.2),[12]:  
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Every hyponbrmal operator is * - paranormal. In particular, every 

normal operator is * - paranormal. 

Proof:  

Let T be a hyponormal operator and let x in a Hilbert space H 

such that ||X|| = 1 ,  then ||T*x||2 
≤ ||Tx||2. Also ||T*x||2 

≤ || T2X|| . 

||T*x||2 ≤ ||Tx||2 ≤ ||T2x|| . Hence T is a* - paranormal operator.  

Remark (1.2.3),[8],:  

1. Every normal operator is binomial. 

2. Every quasi normal operator is binormal. 

Proposition (1.2.7) , [8]:  

1. A is binomial if and only if A* is binomial. 

2. If A is binormal and a is any complex scalar, then αA is binormal. 

3. If A is binomial, then A-1 is binonnal if A-1 exists. 

Proposition (1.2.8), [12]:  

Let A be hyponormal and binomial operator , then An is hypononnal 

for n ≥   

Proposition (1.2.9), [8]:  
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Let A be an operator on Hilbert Space H , then the following 

statements a equivalent: 

1. A is a Ө - operator. 

2. A*(A*A – AA*) = (A*A - A*A) A. 

Proof:  

Let A be a Ө - operator, then A*(A*A - AA*) = A*A*A - 

A*AA*.  

By Ө - operator, we get A*AA - AA*A = (A*A - AA*)A. 

Conversely, since A*(A*A — AA*) = (A*A — AA*)A, then 

A*A(A+A*) = A*AA + A*AA* = A*A*A + AA*A = (A*+A) 

(A*A) Hence A is a Ө - operator. 

Proposition (1.2.10), [8]:  

If A is a Ө - operator and A-1 exists, then A-1 is a Ө - operator. 

 

Remark (1.2.4):  

1. Every normal operator is a Ө - operator is a Ө - operator. 

2. Every quasinormal operator is a Ө - operator . 

 

Proof : 
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1. Let A be a normal operator, that is (A*A = AA*), then 

(A*A) (A + A*)= A*AA + A*AA*, 

=AA*A + A*A*A, 

= (A + A*)AA*. Thus 

A is Ө - operator . 

2. Let A be a quasi noromal operator, then 

A(A*A) = (A*A) A . Therefore 

(A*A)A*  = A*(A*A). thus 

(A*A) (A+A*) = (A*A)A + (A*A)A*, 

= A(A*A)  + A*(A*A), 

—(A*+A) (A*A).  

Hence A is a Ө - operator  . 

Proposition (1.2.11),[7]:  

Let A and B be operators on a Hilbert space H, then: 

I. If A is compact Operator and V is any operator then AB is compact. 

2. If A is compact operator and a is any scalar then αA is compact. 

3. If A and B are compact operators then A + B is compact. 
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Chapter Two 

Solution of Discrete – Time 

Operator Equations 
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CHAPTER TWO 

Solution of Discrete - Time 

Operator Equations 

(2.1)  Some Types of Operator Equations:  

(1) Continuous and discrete - time Sylvester operator equations: 

AX ± XB = α C, (2.1) 

AXB ± X = α C. (2.2) 

(2) Continuous and discrete - time Lyapunnov operator equations: 

A*X – XA = α C , (2.3) 

A*XA – X = α C (2.4) 

Where A, B and C are given operators defined on a Hilbert space H , 

X is an operator that must be determined, ∝  ix any scalar, and A* is 

the adjoint of A,[4] 

In general, these operator equations may have one solution, infinitive 

set of solutions or no solution. 

In this section, existence and uniqueness of the solution of eq. s (2.2) 

and (2.4), when B is an invertible operator in eq. (2.2), and A is an 

invertible operator in eq. (2.4) are studied. 
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The discrete - time Sylvester equation can be transformed 

into continuous - time Sylvester operator equation as 

follows: 

Multiply eq. (2.2) from the right by , then eq. (2.2) becomes: 

AXBB -1 ± XB-1 = α CB-1 

AX ± XB -1 = α CB-1 

Let CB-I = W, the above equation becomes : 

AX ± XB -1 = αW (2.5) 

Also, the discrete - time Lyapunov operator equation can be transform 

to continuous - time Lyapunov operator equation as follows: 

Multiply eq. (2.4) from the right by A-1, then eq. (2.4) becomes : 

A*XAA -1 – XA-1 = α CA-1 (2.6) 

Let CA-1 = W ,  then eq. (2.6) becomes : 

A*X – XA -1 = α W. (2.7) 

Recall that, the spectrum of the operator A ≡ σ (A) { λ  C : (A – λI)  is 

not invertible}, and B(H) is the Banach space of all bounded linear 

operators defined on- the Hilbert space H , [5] . 
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Sylvester - Rosenblum Theorem(2.2.1),[5].  

If A and W are operators in B(H) (panach algebra of all bounded 

linear, operators defined on a Hilbert space H) , such that 

σ (A) ∩ (B) = ø , then the. operator equation AX  - XB = α C 

(continuous - time Sylvester operator equation) has a unique solution 

X, for every operator C. 

The following corollaries give the unique solution for the operator eq. 

(2.5). 

Corollary (2.2.1):  

If A and B are operators in B(H) , and B-1 exists such that 

σ(A) ∩ σ (B-1) = ø , 

then, the operator equation AX - XB-1 = α W, has a unique solution 

X for every operator W  B(H). 

Corollary (2.2.2): 

If A and B are operators in B(H) , and B-1 exists, such that 

σ(A) ∩ σ(-B-1) = ø , then the operator equation AX + XB-1 = α W,  

has a unique solution for every operator W  B(H) . 
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Proposition (2.2.1):  

Consider eq. (2.5) ,  σ (A) ∩ σ (B1) = ø then the operator 








 −
−10 B

WA α  is defined on H1 ⊕  H2  is similar to the operator 








− −10

0

B

A  . 

 

Proof:  

Since σ (A) ∩ σ (B-1) = ø , then by Sylvester - Rosenblum theorem , 

the operator equation AX – XB-1 = αW, has a unique solution X. Also,  










I

XI

0
 








−10 B

oA  = 






 −
−10 B

WA α  








I

XI

0
 

 

But 








I

XI

0
 is similar to the operator , so 









− −10

0

B

A  is similar to 








 −
−10 B

WA α  . 

Corollary: (2.2.3)  

Consider eq. (2.5), σ (A) ∩ σ (-B-1) = ø , then 

The operator  








−
−

−10 B

WA α is defined on H1 ⊕  H2 is 

Similar to the operator  








− −10

0

B

A  

Notes:  

(1) The converse of the above proposition is not true in general. 
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(2) If the condition σ(A) ∩ σ(B-1) = ø , fails to satisfied then the 

operator equation AX - XB-1 = α W, may have no solution. 

(3) If the 'condition σ (A) ∩ (-B-1) = ø , fails to satisfy then 

The operator equation AX + XB-1 = α W, may have no. solution. 

Now, the following Corollary gives the unique - solution the operator 

eq. (2.7).. 

Corollary: (2.2.4)  

If A an operator in B(H) , A-1 exists such that 

σ (A*) ∩ σ(A-1) = ø , then eq. (2.7) has a unique solution X, for 

every operator W. 

Proposition: (2.2.2)  

Consider eq. (2.7), if (A*) ∩ (A-1) = ø , then the 

Operator  






 −
−10

*

A

WA α  is defined on H1 ⊕  H2 is similar to 

The operator 







−10

0*

A

A  

 

 

 



 28

Proof:  

Since σ (A*) ∩ σ (A-1)= ø , then by Sylvester — Rosenblum 

theorem, eq. (2.7) has a unique solution. Also 










I

XI

0
 








−1

*

0

0

A

A  = 






 −
−10

*

A

WA α









I

XI

0
 

But  








I

XI

0
 is invertible , so 








−10

0*

A

A is  

Similar to 






 −
−10

*

A

WA α  . 
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Notes:  

(1) The converse of the above proposition is not true in general. 

(2) If the condition σ (A) ∩ σ (A-1) = ø , fails. to Satisfied then eq. 

(2.7)  may have one solution; an infinite number of solutions or it 

may have no solution. 

(2.3) The Nature of The Solution For The Discrete - Time 

Lyapunov Operator Equations  

In this section , we study the nature of the solution for special types of 

the linear operator equation , namely the discrete - time Lyapunov 

equation. 

Proposition: (2.3.1) , [2] :  

If A is a normal operator and .A-1 exists, then A-1 is normal . 

Proposition: (2.3.2) , [2] : 

If A is a hyponormal operator, and A-1 exists, then A-1 is hyponormal. 
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 Remarks: (2.3.1)  

(1) If A , A-1 , and W are self adjoint operators , the eq. (2.7) , may 

or may not have a solution. Moreover, if it has a solution then it 

may be non self - adjoint. 

 This remark can be easily observed in matrices. 

(2) Consider eq. (2.7) , if W has self - adjoint operator, then it is 

not necessarily that X = X* . 

(3) If A , A -1, and W are skew - adjoint operators, then eq. (2.7) 

has no solution. 

Proposition: (2.3.5) , [2]  

(1) If A is a self - adjoint operator , then A is normal. 

(2) If A is skew - adjoint operator , then A is noimal.  

 

Remark: (2.3.2)  

Consider eq. (2.7) , 

(1) If A and W are normal operators , then the solution X is 

not necessarily normal operator. 

(2) If W is noimal operator and A is any operator , then it is 

not necessarily that the solution X is normal operator. 
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Remark: (2.3.3)  

(1) Consider eq. (2.7) , if W is compact operator , then A , A-1 , and 

X are not necessarily compact operators. 

(2) If A or W or A-1 compact operator, and the solution of eq. (2.7) 

exists, then it is not necessarily to be compact. 
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Putnam - Fugled Theorem: (2.3.1) , [1]  

Assume that M, N, T  B(H) , where M and N are normal.  

if MT = TN  then M*T = TN* 

Definition:(2.3.1), [1] : 

An operator M is said to be dominant if 

||(T -  z) * x || (T – z) x || , for all z  σ (T) and x  R 

Definition: (2.3.2) [1] :  

An operator M is called M - hyponormal operator if 

|| (T — z)*x || ≤ ||M ||(T - z)x || , for z  C and x  H. 

Theorem: (2.3.2) , [3] :  

Let M be dominant operator and N* is M - hyponormal operator. 

Assume that MT = IN for some T  B(H) then M*T = TN*. 

Theorem: (2.3.3) , [3] : 

Let A and B be two operators that satisfy Putnam - Fugled condition. 

The operators equation AX -  XB = C has a solution X f and only if 










B

A

0

0  and  








B

A

0

0  are similar operator on H1 ⊕  H2. 

As corollaries , we have  
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Corollary : (2.3.1) 

 If A is normal and A-1 exists , then operator equation  

A*X + XA -1 = α W has a solution if and only if 








− −10

0*

A

A  is similar to 










−
−

−10

*

A

WA α  . 

 

Corollary : (2.3.2) 

 If A and B are normal operators and B-1 exists then the operator 

equation AX – XB-1 = αW has a solution if and only if  










− −10

0

B

A  is similar to 








−
−

−10

*

B

WA α   . 

 

The following corollaries follows directly from the theorem (2.3.2) . 

 

Corollary : (2.3.3) 

 If A is a dominant or M – hyponormal operator A-1 exists . Then 

, the operator equation A*X + XA-1 = α W 

Has a solution if and if 








− −10

0*

A

A  and 








−
−

−10

*

A

WA α   

are similar operators on H1 ⊕  H2 . 



 34

Corollary : (2.3.4) 

 If A and B are dominant or M – hyponormal operator and B-1 

exists . Then the operator equation AX – XB-1 = α W has a solution  

If 








− −10

0

B

A  and 








−
−

−10 B

WA α  are similar operators on H1 ⊕  H2 . 

 

Proposition : 

 Consider eq . (2.7) , if A and W are orthogonal operators , and 

A-1 exists and W is also , orthogonal operator , and the solution X of 

eq. (2.7) is unique then this solution is an orthogonal operator . 

 

Proof : 

Consider the operator equation 

A * X + XA -1 = W , 

(A*X = XA -1)* = W* , 

Since W is an orthogonal operator (W* = W-1) implies that  

W = (W-1)* 

X*A + (A -1)*X* = W* , 

[X*A + (A -1)*X* = W*] -1 

Since A is an orthogonal operator (A* = A-1)  

A-1(X*) -1 + (X*) -1 A* = (W*) -1 , 

A*(X*) -1 + (X*) -1 A-1 = W . 
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Then (X*)-1 = X , so X* = X-1 . 

Therefore , X is orthogonal operator . 

 

 

Proposition : (2.3.7) 

 Consider eq . (2.7) , if A is unitary operator and Q is orthogonal 

operator and the solution of eq. (2.7) is unique , then this solution is an 

orthogonal operator . 

 

Proof : 

Consider the following linear operator equation 

A*X + XA -1 = W , 

(A*X = XA -1)* = W* , 

X*A + (A -1)*X* = W* , 

(X*A + (A -1)*X*) -1 = (W*)-1 , 

A-1(X*) -1 + (X*) -1 [(A -1)*] -1 = (W*)-1 

Since A is unitary operator then A* = A-1 

So , A* (X*)-1 + (X*) -1A-1 = (W*)-1 , 

Since eq. (2.7) has a unique , then 

X = (X*) -1 = (X-1)* . Therefore , X* = X-1 

implies  that X is a orthogonal operator . 
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Then (X*)-1 = X , So X* = X-1 . 

Therefore , X is orthogonal operator . 

 

 

Proposition : (2.3.7) 

 Consider eq. (2.7) , if A is unitary operator and W is orthogonal 

operator and the solution of eq. (2.7) is unique , then this solution is an 

orthogonal operator . 

 

Proof : 

Consider the following linear operator equation  

A*X + XA -1 = W , 

(A*X + XA -1)* = W* , 

X*A + (A -1)*X* = W* , 

(X*A + (A -1)*X*) -1 = (W*)-1 , 

A-1 (X*) -1 + (X*) -1[(A -1)*] -1 = (W*)-1  

Since A is unitary operator then A* = A-1 

So , A*(X*) -1 + (X*) -1A-1 = (W*)-1 , 

Since eq. (2.7) has a unique , then  

X = (X*) -1 = (X-1)* . Therefore , X* = X-1 

Implies that X is a orthogonal operator . 
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Definition : (2.4.1) , [2] 

Let R be a ring . A linear (additive) mapping τ from R to R is called a 

derivation , if  

τ(ab) = a τ(b) + τ(a) b , for all a , b in R . 

 

Proposition : (2.4.1) 

The map τA,B(X) = AX – XB-1 is a linear map . 

 

Proof : 

Since τA,B(αX1 + βX2)  = A(αX1 + βX2) - (αX1 + βX2) B
-1 , 

     = αAX1 + βAX2 - αX1B
-1 - βX2 B

-1 , 

     = αAX1 - αX1B
-1 + βAX2 - βX2B

-1 , 

     = α(AX1 – X1B
-1) + β(AX2 – X2B

-1) , 

     = α τA,B(X1) + β τA,B(X2) . 

Then τA,B is a linear map . 

 

Proposition : (2.4.2)  

The map τA,B(X) = AX – XB-1 is bounded . 

Proof : 

Since || τA,B || = ||AX – XB-1|| ≤ ||AX|| + ||XB-1|| 

           ≤ ||X||[||A|| + ||B-1||] . 

But A , B-1  B (H) , || τA,B || ≤ M ||X|| , where M = (||A|| + ||B-1||) . 
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So τA,B is bounded . 

The following remark shows that the mapping τA,B is not derivation . 

 

Remark : (2.4.1)  

Since τA,B (XY) = A(XY) – (XY)B -1 for X, Y  B (H) 

and X τA,B (Y) = XAY – XYB -1 . Also , 

τA,B (X) Y = AXY – XB -1 Y then one can deduce that  

τA,B (XY) ≠  τA,B (Y) + τA,B (X) Y . 

 

Definition : (2.4.2) , [2] 

Let R be * - ring , i .e . a ring with involution * . The linear mapping τ 

from R to R is called Jordan * - derivation , 

if for all a , b  R , 

τ (a2) = a τ (a) + τ (a) a* 

 

Remark : (2.4.3) 

The mapping τ:B (H) → B (H) defined by 

τ (X) = τA,B(X) = AX – XB-1 is not Jordan * - derivation . 

Now , we have the following simple proposition : 
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Proposition : (2.4.3) 

Α Rang (τA,B) = {α (AX – XB-1) : X  B (H)} , 

   = {A (αX) – (αX)B-1 : X  B (H)} . 

Let X1 = αX , then 

α Rang (τA,B) = {AX1 – X1B
-1 : X1  B (H)} , 

      = Rang τA,B  . 

 

Remark : (2.4.2) 

in general Rang (τA,B)* ≠ Rang (τA,B) . 

 

(2.5) The range of τA 

In this section , we discuss and study the map τA : B (H) → B (H) , 

where τ (X) = τA(X) = A*X – XA -1 , X  B (H) . 

 

Proposition : (2.6.1) 

The map τA = A*X – XA -1 is a linear map . 

Proof : 

Since τA (αX1 + βX2) = A*(αX1 + βX2) – (αX1 + βX2) A
-1 , 

    = α A*X 1 + βA*X 2 – αX1A
-1 – βX2A

-1 , 

    = α (A*X 1 – X1A
-1) + β (A*X 2 – X2A

-1) , 

    = α τA (X1) + β τA(X2) . 

Then τA is a linear map . 

Proposition : (2.5.2) 

The map τA = A*X – XA -1 is bounded . 
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Proof : 

Since || τA || = ||A*X – XA-1|| ≤ ||A*X|| + ||XA-1|| , 

   ≤ || X || [||A|| + ||A-1||] . 

But A , A-1  B (H) , let M = ||A|| + ||A-1|| , then 

|| τA || ≤ M || X || . So τA is bounded . 

 

Remark : (2.5.1) 

τA(XY) = A*(XY) – (XY)A -1 , for all X , Y  B (H) , 

and X τA (Y) = XA*Y – XYA -1 . 

Also , τA (X)Y = A*XY – XA -1Y . Then one can deduce that 

τA(XY) ≠ X τA(Y) + τA(X)Y . 

 

Remark : (2.5.2) 

The mapping  τA is not Jordan* - derivation . 

Now , we have the following simple proposition . 

Propositions : (2.5.3) 

 α Rang (τA) = Rang (τA) . 

Proof : 

Since ⊇ Rang (τA) = {α (A*X – XA -1) : X  B (H)} , 

    = {A*(αX) – (αX) A -1 : X  B (H)} . 

Let X1 = αX , then  

α Rang (τA) = {A*X 1 – X1A
-1 : X1  B (H)} = Rang (τA) . 

Remark : (2.5.3) 

Rang (τA)* ≠ Rang (τA) . 
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Proposition : (2.5.4) 

Rang (τA) is linear manifold of operators in B (H) . 

 

Proof : 

It is known that rang (τA(X)) = {W : τA (X) = W , X  B (H) . 

(1) 0  Rang (τA) since X = 0  B (H) } and τA (0) . 

(2) Let W1 , W2  Rang (τA) we must prove W1 – W2  Rang (τA) . 

Therefore , ∃ X1  B (H) such that τA (X1) = W1 and ∃ X2  B (H) . 

such that τA(X2) = W2 . Thus , τA (X1 – X2) = A*(X 1 – X2) – (X1 – X2) A
-1 

     = (A*X1– X1A
-1) – (A*X2 – X2A

-1) 

     = τA (X1) - τA (X2) . 

     = W1 – W2 . 

Then W1 – W2  B (H) such that τA (X1 – X2) = W1 – W2 . So , 

W1 – W2  Rang (τA) . 

Therefore , Rang (τA) is a linear manifold of operators . 

 

Remark : (2.5.4) 

If W  Rang (τA) , then so does W* . 

 

Remark : (2.5.5) 

If W1 , W2  Rang (τA) , then W1 , W2 is not necessarily in Rang (τA) . 
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Chapter Three 

Lyapunov and Qusai – Lyapunov 

Operator Equations 

 In this section , we give some types of linear operator equations : 

(1) A special type of linear operator equations takes the formula ,  

AX – XB = Y ………….       (3 – 1) 

Where A , B and Y are given operators defined on a Hilbert space H , 

and X is the unknown operator that must be determined . This linear 

operator equation is said to be the Sylvester operator equation or 

continuous – time Sylvester equation , [3] , and [5] . 

 The author in reference [5] discussed the necessary and 

sufficient conditions for the solvability of this linear equation . 

Furthermore , he gave equivalent conditions for the solvability of this 

linear equation for special types of operators A and B . 

 

(2) The linear operator equation of the form  

A*X + XA = W , ………………      (3 – 2) 

 Where A and W are given operators defined on a Hilbert space 

H , and X is the unknown operator that must be determined . This 

linear operator equation is called the Lyapunov operator equation , or 

the continuous – time Lyapunov equation , [3] and [5] . 

 The author in reference [3] studied the necessary and sufficient 

conditions for the solvability of this linear operator equation . 
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(3) A special case of the continuous – time Lyapunov operator 

equation  

AX + XA = W , ………………………….    (3 – 3) 

 Where A and W are known operators defined on Hilbert space . 

H , and X is the unknown operator that must determined , [3] and [4] . 

 

(4) The linear operator equation of the from 

AX + X*A = W , ……………………………   (3 – 4) 

 Where A and B are given operators defined on a Hilbert space H 

, and X is the unknown operator that must be determined , X* is the 

adoint of X . These linear operator equation (3 – 3) and (3 – 4) are 

called quasi – Lyapunov operator equations or quasi – continuous – 

time Lyapunov linear operator equations . 

 

(3.2) The Quasi – Continuous – Time Lyapunov Operator 

Equations : 

 The continuous – time Lyapunov equations , are much studied 

because of it's importance in differential equations and control theory , 

[6] . Therefore , we devote the studying of the quasi – continuous – 

time Lyapunov operator equations . 

Now , dose eq . (3.2) and eq. (3.4) have a solution ? 

If yes , is it unique ? 

To answer this question , recall the Sylvester – Rosenblum theorem , 

[5] . 
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Sylvester – Rosenblum Theorem (3.2.1) : 

If A and B are operators in B (H) such that σ (A)  σ (B) = Φ , then 

eq. (3 – 1) has a unique solution X for every operator Y . 

 

According to the Sylvester – Rosenblum theorem we have the 

following corollary . 

 

Corollary (3.2.1) : 

If A is an operator such that σ (A)  σ (- A) = Φ , then eq. (3 – 3) has a 

unique X for every operator W .  

Proposition (3.2.1) : 

Consider eq. (3.3) , if σ (A)  σ (-A) = Φ , then  

The operator 








−
−

A

WA

0
 is defined on H1 ⊕  H2 is similar to 









− A

A

0

0  . 

Proof : 

Since σ (A)  σ (-A) = φ . Then by Sylvester – Rosenblum theorem eq. 

(3.3) has a unique solution X , also : 










I

XI

0
 









− A

A

0

0   = 








−
−

A

WA

0
  









− A

XI

0
 . 

But 








I

XI

0
 is invertible so 









− A

A

0

0  is similar to 








−
−

A

WA

0
 . 
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The converse of the above proposition is not true in general as we see 

in the following example . 

 

Example (3.2.1) : 

let H = 2l (Φ) = 






 ∈∞<= ∑

∞

=1

2

21 ,:,...),(
i

CxixixxX  

Define A : H → H by A(x1 , x2 , ...) = (x1 , 0 ,0 ,...) . Consider eq. (3.3) 

, Where W = (x1 , x2 , ...) = (0 , x1 , 0 , ...) . Then X = U is a solution of 

this equation since (AX + XA) (x1 , x2 , …) = (AU + UA) (x1 , x2 , …)  

A (0 , x1 , x2 , …) + U (x1 , 0 , 0 , …) + (0 , x1 , 0 , …) = WX  

On the other hand , U is solution of eq . (3-3) and 










I

UI

0
  









− A

A

0

0  = 








−
−

A

WA

0
  









− A

UI

0
 . 

Therefore , 








−
−

A

WA

0
 is similar to 









− A

A

0

0  . 

Moreover 0 is an eigenvalue of A and X = (0 , x2 , …) is the 

associated eigenvector . 

Therefore , 0  σ (A)  σ (-A) and hence 0  σ (A)  σ (-A) ≠ Φ . 
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(3.3) The Nature of the Solution for the quasi – continuous – time 

Lyapunov operator equations : 

In this section , we study the name of the solution of eq. (3 – 3) for 

special types of operators . 

 

Remark (3.3.1) : 

if W is self – ad joint operator , and A is any operator , then eq. (3 -3) 

may of may not have solution . Moreover , if it has a solution then it 

may be non self – adjoint . 

This remark can easily be checked in matrices . 

next if A and W are self – adjoint solution for eq. (3-3) ? 

The following theorem gives one such conditions . 

 

Theorem (3.3.1) : 

Let A and W be positive self – adjoint operators . 

If 0  σ (A) , then the solution X of eq. (3-3) is self – adjoint . 

 

Proof : 

Since 0  σ (A) , then it is easy to see that σ (A)  σ (-A) = Φ and 

hence eq. (3-3) has a unique solution X by Sylvester – Rosenblum 

theorem . Moreover , 

(AX + XA)* = W* , 

A*X* + X*A* = W* , 

Since A and W are self – adjoint operators , then AX* + X*A = W . 
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Therefore , X* is also a solution of eq. (3 – 3) . By the uniqueness of 

the solution one gets X = X* . 

 

Proposition (3.3.1) : 

If A and W are self – adjoint operators , and the solution of the 

equation AX + X* A = W exists , then this solution X is a unique . 

 

Proof : 

Consider eq. (3-4) , 

  AX X*A = W 

Since W is self – adjoint operator , 

  (AX + X*A)* = W* , 

  A*(X*)* + X*A* = W* , 

 

Since A and W is self – adjoint operator ,   

 AX + X*A = W , since the solution exists , then X is a unique . 

 

 The following proposition shows that if the operators A and W 

are skew – adjoint , and the solution of eq. (3-4) exists then this 

solution is unique . 
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Proposition (3.3.2) : 

If A and W are skew – adjoint operators , and the solution of eq/ (3-4) 

exists , then the solution X is a unigue . 

 

Proof : 

Consider eq . (3-4)  

  AX + X*A = W , 

 

Since W is a skew – adjoint operator , so 

  - (AX + X*A)* = - W* , 

  - (A*(X*)* + X*A*) = - W* , 

  (-A*)X + X*(-A*) = - W* , 

 

Since A and W are skew – adjoint operators , then  

  AX + X*A = W , 

Since the solution X exists , then the solution X is a unique . 

 

Remark (3.2.2) : 

If A is a self – adjoint operator and W is a skew – adjoint . Then the 

solution X of eq . (3-4) is not necessarily exists . 

 

Remark (3.3.3) : 

If W is a self – adjoint operator , and A is any operator , then the 

solution X of eq . (3 -4) is not necessarily self – adjoint operator . 



 50

The following example explain this remark . 

 

Example (3.3.1) : 

Consider eq. (3-4) , take W = W* = 








00

01  , and A = 








03

02  , 

  AX + X*A = W , 

After simple computations one can gets  

  x = 














2

1
1

0α
 ≠ X* , 

Where α is any scalar . 

 

Remark (3.3.4) : 

If W is a skew – adjoint and A is any operator , then the solution X of 

eq. (3-4) is not necessarily exists . 

 

The following example explain this remark . 

 

Example (3.3.2) : 

Consider eq . (3-4) , take W = 








− 02

20  and A = 








03

02  

   AX + X*A = W , 

After simple computations one can gets 

x2 = 1 and x2 = 0  which has no solution . 
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Proposition (3.3.3) , [13] : 

If A and W are skew – adjoint operators and eq. (3-2) has only one 

solution then this solution is also a skew – adjoint . 

 

Proof : 

Since A* = - A and W* = - W then it easy that to check 

A*(- X*) + (- X*) A = W and since the equation has only one solution 

then X* = - X . 

 

Remark (3.3.7) , [13] : 

Consider eq. (3-2) , where the solution of it exists . If A and W are 

normal operators then this solution is not necessarily normal . 

This fact can be seen in the following example . 

 

Example (3.3.4) : 

let H = 2l (C) , consider eq. (3-2) , where A = iI and W = 0 . Therefore 

, - iIX + iIX = 0 . It is easy to check the unilateral shift operator 

defined by : 

U (X1 , X2 , …) = (0 , X1 , X2 , …) ,   ∀ (X1 , X2 , …)  2l (C)  

is a solution of the above equation which is non normal operator . 

 

Putnam – Fugled Theorem (3.3.2) , [5] : 

Assume that M , N , T  B (H) , Where M and N are normal . If MT = 

TN then M*T = TN* . 
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Recall that an operator T . is said to be dominant if 

||(T – Z)*X|| ≤ M || (T – Z) x|| for all z  σ (T) and x  H . On the 

other hand , operator T is called M – hyponormal operator if 

||(T – Z)* X|| ≤ M ||(T – Z) x|| for all Z  C and x  H , [1] . 

In [  ] , the above theorem was generalized as following . 

 

Theorem (3.3.3) , [5] : 

Let M be a dominant operator and N* is an M – hyponormal operator . 

Assume MT = TN for some T  B (H) then M*T = TN* . 

A corollaries , we have . 

 

Corollary (3.3.1) , [13] : 

If A is normal operator then eq. (3-2) has a solution if and only if 










− A

A

0

0*

 is similar to 








−
−

A

WA

0

*

  . 
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Corollary (3.3.2) , [13] : 

If A is dominant or a M – hyponormal operator then the operator 

equation defined by eq. (3-2) has a solution if and only if 










− A

A

0

0*

   and   








−
−

A

WA

0

*

  are similar operator H1 ⊕  H2 . 

 

Corollary (3.3.3) , [13] : 

If A is a dominant or a . M – hyponormal operator then the operator 

eq. (3-2) has a solution a solution if and only if  










− A

A

0

0  and 








−
−

A

WA

0
 are similar operator H1 ⊕  H2 . 

 

Remark (3.3.8) , [13] : 

If A (or W) is compact and the solution of eq. (3-2) exists then it is not 

necessarily compact . 

 

As an illustration to this remark , consider the following examples . 

 

Example (3.3.5) : 

Consider the equation A*X + XA = A* + A , where A is a compact 

operator on an infinite dimensional Hilbert space H . It is clear that X 

= I is a solution of the above operator equation which is not compact . 
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Example (3.3.6) : 

Consider eq. (3-2) , where W = 0 . It is clear that the zero operator is 

compact . Given A = iI , then X = I is a solution of eq. (3-2) which is 

not compact . 

 

Proposition (3.3.4) : 

If A is a compact operator then the eq. (3-4) is compact . 

 

Proof : 

Since A is compact then X*A is also compact . 

Since A is compact then AX is also compact . 

Since AX and X*A are compact then AX + X*A is compact . 

Therefore W is compact . 

 

(3.4) On The Range of τA : 

In this section , we discuss the infectivity of the map  

τA : B(H) → B (H) and show that in general the map τA is not 

necessary one – to – one . 

Define the mapping τ : B (H) → B (H) by 

    τ (X) = τA (X) = A*X + XA , X  B (H) 

Where A is a fixed operator in B (H) . 

It is clear that the map τA is a linear map , infact  

τA (αX1 + βX2) = A* (αX1 + βX2) + (αX1 + βX2) A 

   = α τA (X1) + β τA(X2)  
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Also , the map τA is bounded , since  

|| τA || = || A*X + XA || ≤ || A*X || XA || ≤ ||  || [ || A* || + || A || ] 

But A  B (H) and || A* || = || A || , thus || τA (X) || ≤ M || X || , 

Where , M = 2 ||A|| , so τA is bounded . 

 

The following remark shows that the mapping τA is not a derivation . 

 

Remark (3.4.1) , [15] : 

Since τA (XY) = A* (XY) + (XY) A for all X , Y  B (H) and XτA (Y) 

= XA *Y + XYA . Also , τA(X) Y = A*XY + XAY . Then one can 

deduce that τA (XY) ≠ XτA (Y) + τA(X)Y . To prove this , let H = 

2l (C) and A = U , where is a unilateral shift operator . Then τU(X) = 

BX + XU , where B is the bilateral shift operator . 

In this case τU is not derivation . To see this , consider  

τU(IU) = τU(U) = BU + U2 and 

IτU(U) + τU(I)U = τU (U) + τU(I)U , 

   = BU + U2 + (B + U)U , 

   = 2BU + 2U2 = 2 (BU + U2) . 
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It is easily to seen that the mapping τ : B(H) → B(H) defined by 

τ(X) = τA(X) = A* + XA , X  B(H) is not Jordan * - derivation . 

To see this see the above example . 

 

Next , we discuss the infectivity of the map τA and show that , in 

general the map τ : B(H) → B(H) is not necessary one – to – one . 

 

Proposition (3.4.1) , [13] : 

Consider the map τ (X) = τA (X) = A*X + XA . If A is a skew – 

adjoint operator then τA is not one – to – one . 

 

Proof : 

Since A is a skew – adjoint operator , then . 

ker (τ) = {X  B(H) : AX = XA} . Therefore I  ker (τA) and thus τA is 

not one – to – one . 

Now , we have the following proposition . 
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Proposition (3.4.2) , [13] : 

1) Range (τA)* = Range (τA) . 

2) α range (τA) = Range (τA) . 

 

Proof : 

1) Since Range (τA)* = {X*A + A*X* , X  B(H)} . Then , 

Range (τA)* = {X*A + A*X* , X  B(H)} . where X1 = X* . 

Therefore , Range (τA)* . 

2) α Range (τA) = {α(A*X + AX) , X  B(H)} . 

   = {A* (αX) + (αX)A , X  B(H)} . 

Let X1 = αX , then  

Range (τA) = {A*X 1 + X1A , X1  B(H)} 

  = Range (τA) . 

 

(3.5) On The Range of ρA : 

In this section we study and discuss the range of ρA , where  

ρ(X) = ρA(X) = AX + X*A , X  B(H) . 

Where A is a fixed operator in B(H) . 
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It is clear that map ρA is a linear map . Also the , ρA is bounded , since  

 

|| ρA || = ||AX + X*A|| ≤ ||AX|| + ||X*A|| ≤ ||A|| ||X|| + ||X*|| ||A|| 

Since ||X*|| = ||X|| . 

Therefore , ||ρA|| ≤ 2||A|| ||X|| , 

Let M = 2 ||A|| ≥ 0 , so || ρA || ≤ M ||X|| . Then ρA is bounded . 

 

The following steps shows that Range (ρA)* ≠ Range (ρA) , 

Range (ρA)* = {(AX + X*A)* , X  B(H)} , 

   = {A*X + X*A* , X  B(H)} , 

   ≠ Range (ρA) . 

Also , α Range (ρA) = {α (AX + X*A) , X  B(H)}  

    = {A(αX) + (αX)* A , X  B(H)} 

Let αX = X1  

α Range (ρA) = {AX 1 + X1* A* , X1  B(H)} 

   = Range (ρA) . 

The following remark shows the mapping ρA is not – a derivation . 
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Remark (3.5.2) : 

Since ρA (XY) = A(XY) + (XY)* A 

   = A(XY) + Y*X*A , 

for all X , Y  B(H) , 

and XρA(Y) = X [AX + Y*A] , 

  = XAY + XY*A . 

Also , ρA(X)Y = (AX + X* A)Y , 

   = AXY + Y*AY . 

 

Then one can deduce that : 

 ρA(XY) ≠ XρA(Y) + ρA(X)Y . 

Now the following remark . shows the mapping ρA is also not * - a 

derivation . 

 

Remark (3.5.2) : 

Since ρA(X + Y) = A(X + Y) + (X + Y)*A , 

   = AX + AY + X*A + Y*A , 

   = AX + X*A + AY + Y*A  

   = ρA(X) + ρA(Y) . 

Now , 

XρA (X) ρA(X) X* = X[AX + X*A] X* , 

   = XAX + XX*A + AXX* + X* AX* , 

So    ρA(X2) = (AX2 + (X*)2 A) , 
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and   ρA(X2) ≠ XρA(X) + ρA(X)X* . 

then ρA is not* - a derivation  

 

 

(3.6) On The Range of µA (X) : 

In this section , we study and discuss the range µA(X) , where 

   µA = µA(X) = AX + XA , X  B(H) 

Where A is a fixed operator in B(H) . 

It is clear that the map µA is a linear map . Also , the map µA is 

bounded , since   || µA || = || AX + XA || ≤ M || X || , 

where M = 2 ||A|| ≥ 0 . Then µA is bounded . 

The following steps shows that Range (µA)* ≠ Range (µA) . 

Range (µA)* = {(AX + XA)* , X  B(H)} , 

   = {A*X* + X*A* , X  B(H)} , 

   ≠ Range (µA) . 

Also , α Rang (µA) = { α (AX + XA) , X  B(H)} , 

    = {A(αX) + (αX) A , X  B(H)} , 

Let αX = X1  

    = {AX1 + X1A , X1  B(H)} , 

    = Range (µA) . 
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The following remark shows that mapping µA is not a derivation . 

 

Remark (3.6.1) : 

Since µA(XY) = A(XY) + (XY)A . 

For all XµA(Y) = X(AY) + X(YA) , 

   = XAY + XYA . 

Also , µA(X)Y = AXY + XAY , 

Then one can deduce that : 

 µA(XY) ≠ XµA(Y) + µA(X)Y . 

Now , the following remark shows that the mapping µA is also not* - a 

derivation . 

Remark (3.6.2) : 

Since µA(X + Y) = A(X + Y) + (X + Y)A , 

   = AX + AX + XA + YA , 

   = (AX + XA) + (AY + YA) , 

   = µA(X) + µA(Y) . 

Now , 

XµA(X) + µA(X)X* = X[AX + XA] + [AX + XA]X* 

    = XAX + X2A + AXX* + XAX* , 

So ,     µA(X2) = (AX2 + X2A) , 

and    µA(X2) ≠ XµA(X) + µA(X)X* . 

therefore µA is not * - a derivation . 
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Chapter Four 

Generalization of the 

Lyapunov Equations 
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The operator equation of the form : 

 A* x B x B x A = W , …………..   (4-1) 

Where A , B and W are given operator defined on H , X is the 

unknown operator that must be determined , and A* is the adjoint of 

A. 

 The above operators equation is one of the generalization 

continuous – time Lyapunov operator equation . 
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(4.2) : The Nature of The Solution for Generalization Lyapunov 

Equations : 

 

 Now , the nature of the solution for more general of the 

continuous – time Laypunov operator equation are studied for special 

types operators . 

 

Proposition (4.2) : 

 If B and W are self – adjoint operators , and the operators 

equation (4.1) has only one solution X then this solution is also self – 

adjoint , 

 

Proof : 

 Consider to operator equation 

  A*XB + BXA = W , 

  (AXB + BXA)* = W* , 

  A*X*B* + B*X*A* = W* 

  A*X*B + BX*A = W , 

Since X is a unique solution . 

So X = X* , then is self – adjoint . 
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Proposition (4.2.2) : 

 If B is a skew – adjoint , W is a self – adjoint and A is any 

operator and if the equation (4.1) has only one solution then this 

solution is a skew – adjoint . 

 

Proof : 

Consider equation (4.1) 

  A*XB + BXA = W , 

  (A* XB + BXA)* = W* 

  A*X*B* + B*X*A = W* . 

  A*X* (-B) + (- B)X*A = W* , 

  A* (- X*) B + B (- X*) A = W . 

Since X is a unique solution , so X = - X* 

Then X is a skew – adjoint . 
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Proposition (4.2.3) : 

  

 If B and W are skew – adjoint operators , A is any operator and 

if the equation (4-1) has only one solution then this solution is self – 

adjoint . 

 

 

Proof : 

Consider equation (4.1) , 

 A* XB + BXA = W , 

 - (A* XB + BXA)* = - W* 

 - B*X*A – A*X*B* = - W*  

 A*X* (- B)* + (- B*) X*A = - W*  

 A* X*B + BX* A = W . 

 

Since X is a unique solution , then  

X* = X . 
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Proposition (4.2.4) : 

 If B and W are self – adjoint operators , A is any operator and if 

the equation (4.1) has only one solution and this solution is also self – 

adjoint . 

 

Proof : 

Consider equation (4.1) , 

  A*XB + BXA = W , 

  (A*XB + BXA)* = W* , 

  A* X* B* + B*X*A = W* , 

  A* X* B + BX* A = W . 

Since X is a unique , so X* = X  

The X is a self – adjoint . 

Proposition (4.2.5) : 

If B is a self – adjoint , W is a skew – adjoint , A is any operator and if 

the equation (4.1) has only one solution then this solution is a skew – 

adjoint . 

 

Proof : 

Consider (4.1) , 

  A*XB + BXA = W , 

  - (A* XB + BXA)* = - W*  

  A* (- X*) B* + B* (- X*) A = - W* , 

  A* (- X*) B + B (- X*) A = W . 
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Since equation (4.1) has only one solution , so X = - X* , the X is a 

skew – adjoint . 

 

Remark (4.2.1) : 

 Consider equation (4.1) , If B is a self – adjoint , W is a self – 

adjoint and A is any operator , Then X is not necessary self – adjoint . 

 

Remark (4.2.2) : 

 Consider equation (4.1) , If A and W are self – adjoint operators 

, B is any operator , Then X is not necessary self – adjoint . 

 

 

Remark (4.2.3) : 

 If A and B are compact operators and the solution X of equation 

(4.1) exist , then this solution is not necessary compact . 
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The X is a self – adjoint . 

 

Proposition (4.3.5) : 

 If B is a self – adjoint , W is a skew – adjoint , W is a skew – 

adjoint , and A is any operator and if the equation (4.4) has only 

solution and this solution is also self – adjoint . 

Proof : 

 Consider equation (4.4) , 

A* x B + B x A = W , 

- (A* x B + B x A)* = - W* , 

A* (- X*) B* + B* (- X*) A = - W* , 

A*(- X*)* B + B (- X*)A = W . 

Since equation (4.4) has only one solution , so X = - X* , Then X is a 

skew – adjoint . 

 

Remark (4.3.1) : 

 Consider equation (4.4) , if 

(1) B is a skew – adjoint , W is a self – adjoint , and A is any 

operator . Then X is not necessary self – adjoint . 

(2) A and B are self – adjoint operators , B is any operator . The 

X is not necessary self – adjoint . 
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Remark (4.3.1) : 

 If A and B are compact operators and the solution of equation 

(4.4) exist , then this solution is not necessary compact . 

 

Example (4.3.1) : 

 Consider the following operator equation  

 A* x B + B x A = A* B + BA , 

Where A and B are compact operator , it is clear that X = I is a 

solution of the above operator equation , but I is not compact . 
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Now , we study that nature of the solution of the operator equations . 

(A*) 2X + XA2 + tAXA = W ,   (4.9) 

and A2X + XA2 + tAXA = W ,   (4.10) 

the following proposition shows if A and W are self – adjoint 

operators and if equation (4.10) has a unique solution then this 

solution is self – adjoint . 

 

Proposition (4.3.6) : 

 Consider equation (4.10) w , If A and W are self – adjoint 

operators then X is self – adjoint . 

Proof : 

 Consider A2X + XA2 + tA x A = W , t  R 

 (A2X + XA2 + tA x A)* = W* ,  t  R 

 X*(A*) 2 X* + tA*X*A* - W . 

Since A and W are self – adjoint then A = A* and W = W* . 

So , X* A2 + A2X* + tAX* A = W ,   t  R 

A2X* + X*A 2 + tAX*A = W . 

Then X in self – adjoint . 

 

Remark (4.3.3) : 

Consider equation (4.10) , If A is self – adjoint operator and W is any 

operator then solution X is not necessary self – adjoint operator . 

The following example the above remark . 
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Example (4.3.2) : 

Consider equation (4.10) ,take A = A* = 








10

01  , W = 








13

02    

Any operator , and t = 2  

Equation (4.10) becomes : 

A2X + XA2 + 2AXA = W 










10

01  








43

21

XX

XX
 + 









43

21

XX

XX
 









10

01  + 2 








10

01









43

21

XX

XX
 









10

01  = 








13

02  

After simple computation , the solution of equation in case take the 

form : 

X = 
















0
4

3

0
2

1

 ≠ X* , where α any arbitrary number . 

 

Remark (4.3.4) : 

Consider (4.9) , 

(1) If A is is self – adjoint operator then the solution X is not 

necessary self = adjoint . 

(2) if W is self – adjoint operator then the solution X is not 

necessarily self – adjoint . 

To explain the above remarks see example (4.3.2) . 

 

Remark (4.3.5) : 

Consider equation (4.9) , if A and W are normal operators , them the 

solution X is not necessary exists . 
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The following example explain this fact . 

Example (4.3.3) : 

Consider equation (4.9) , A = 






 −
ab

ba  , b ≠ 0 . 

Notes that A ≠ A* in general . 

A normal , but not self – adjoint . 

Take  

A = 








− 01

10  , W = 






 −
13

31  and t = 2 . 

After simple computations , we get  

- 2X2 – 2X4 = 1   and   -2X2 + 2X3 = -3 

- 2X4 – 2X1 = 1  and   - 2X3 – 2X2 = 3 

Has no solution . 

 The question now is pertinent , does equation (4.9) has a normal 

solution . To answer this question consider the following example : 

Example (1.3.4) : 

Consider equation (4-9) and take W = 0 , equation (4-9) becomes : 

(A*) 2X + XA2 + tAXA = 0 

It is Cleary X = 0 and 0 is a normal operator . 

Now . We study the nature of the solution of equation (4.9) and 

equation (4.10) for compact operator . 

The following proposition shows if the operator A is compact then the 

operator W is also compact . 
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Proposition (4.3.7) , [21] 

 Consider equation (4.10) , if A is compact operator then W is 

compact operator . 

 

Proof : 

Equation (4.10) , can be written as  

AAX + XAA + tAXA = W , since A is compact operator then AA is 

compact (i.e. A2 compact) . So A2X is compact . A is compact 

operator then XA is compact and XAA is compact , so  XA2 is 

compact . AX is compact then AXA is compact and t AXA is compact 

(t any scalar) . 

So A2X + XA2 + tAXA is compact , then W is compact operator . 
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Remark (4.3.6) : 

 Consider equation (4.10) , if A and W are compact operators 

then the solution X is not necessarily compact operator . 

The following example explain to above remark . 

 

Example (4.3.5)  

 Consider the following operator equation : 

A2X + XA2 + tAXA = (2 + t)A2 , where t is any scalar . 

It is clear that X = I is a solution of the above operator equation , but I 

is not compact operator . 

Now , we study and discuss the nature of the solution of equation (4.6) 

and eq. (4.8) for special types of operators . 

 

Proposition (4.3.8) : 

If B and W are self – adjoint operators , A is any operator and if the 

equation (4.6) has only one solution , then this solution is self – 

adjoint . 

 

Proof : 

 Consider equation (4.6) , 

A*BX + XBA = W , 

(A*BX + XBA)* = W* , 

X* B* A* + A* B* X* = W* . 

Since B and W are self – adjoint , 
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Then A* BX* + X* BA = W . 

Since equation (4.6) has only solution , so X* = X , then X is self – 

adjoint . 

 

Proposition (4.3.9) : 

 If B and W are self – adjoint operators , W is a skew – adjoint , 

and A is any operators and if the equation (4.6) has only one solution , 

then this solution is skew – adjoint . 

 

Proof : 

 Consider equation (4.6) , 

A*BX + XBA = W , 

- (A* BX + XBA)* = W* , 

- X*B*A + A* B*X* = - W* , 

A* B* (- X*) + (- X*) B*A = - W* , 

A* B (- X*) + (- X*) BA = W . 

Since equation *4.6) has only one solution , so X = - X* , then X is a 

skew – adjoint . 

 

Proposition (4.3.10) : 

 If B is a skew – adjoint operator , W is a self – adjoint operator , 

A is any operator . 

Equation (4.6) has only one solution , then X is a skew – adjoint . 
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Proof : 

 Consider equation (4.6) , 

A* BX + XBA = W , 

(A* BX + XBA)* , 

X*B*A + A*B*X* = W* . 

Since B is a skew – adjoint , then  

A*B (-X) + (- X*) BA = W . 

Since equation (4.6) has one solution , so X = -X* , then X is skew – 

adjoint . 
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Remark : (4.3.7) : 

 Consider equation (4.6) , If A and W are self – adjoint operator , 

b is any operator . Then X is not necessarily self – adjoint . 

 

Remark (4.3.8) : 

 If A and B compact operators and the solution of equation (4.6) 

exist , them it solution is not necessarily compact . 

this fact can easily be seen in example (4.3.1) . 
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Chapter Five 

The Range of The 

Generalization Lyapunov 

Operator Equation 



 80

The Range of The Generalization Lyapunov Operator Equations  

 

 In This Chapter , we study the range of the generalization of 

continuous – time Lyapunov operator equations . 
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(5.1) : The Rang of τAB : 

 In this section , we study and discuss the properties of τAB . 

Recall that , a linear mapping τ from a ring R it self is called a 

derivation , if τ (ab) = aτ (a)b , for all a , b in R , [8] . 

Define the mapping τ = B(H) → B(H) by 

τ(X) = τAB (X) = A*XB + BXA , X  B(H) . 

 

Where A and B are fixed operators in B (H) . 

It is clear that the map τAB is a linear map , 

in fact  

τAB(αX1 + βX2) = A* (αX1 + βX2) B + B (αX1 + βX2) A 

= αA*X 1B + βA*X 2B + αBX1A + βBX2A 

= α (A*X 1B + BX1A) + β(A*X 2B + BX2A) 

= ατAB (X1) + βτAB (X2) . 

 

Also , the map τAB is bounded , since : 

|| τAB || = ||A*XB + BXA|| ≤ ||A*XB|| + ||BXA|| 

     ≤ ||X||[2||AB||] , 

thus || τAB || ≤  M ||X|| , where M = 2 ||AB|| , 
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 So, τAB is bounded. 

The following remark shows that the mapping τAB is not a derivation. 

Remark (5.1.1):- 

Since τAB
 (XY) = A* (XY) B + B (XY) A, 

and X  τAB  (Y)=X.A*YB+XBYA. 

Also, τAB (X)Y=A*XBY+BXAY. 

Then we can deduce that 

τAB (XY) ≠ X τAB (Y) + τAB (X) Y 

Proposition (5.1.1):- 

(1)Range (τAB)* = Range (τAB), if B is self— adjoint 

(2) α Range (τAB) = Range (τAB) 

Proof:-  

(1) Since Range (τAB)* = {(A* XB+B X A) *, X  B (H)}. 

Then Range (τAB)* = {(XB)* A + A* (B X)*, X  B (H)},  = 

{B*X*A + A* X* B*, X  B (H)}, 

 = {A*-X* .B* + B* X* A,. X  B (H)} .  

Since B is self - adjoint (B = B*), then 
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Range (τAB)* = {A* X* B + B X* A, X  B (H)}, 

= {A* X 1 B + BX1 A, X1  B (H)}, 

where X* = X1 Therefore, Range (τAB)* = Range (τAB). 

(2) α Range (τAB) = {α (A*XB + BXA) , X  B (H)}, 

= { A*( α X)B + B( a X)A , X  B (H)}, 

= { A*X 1B +BXIA , X1  B (H)}, 

where X, = α X, then 

α
 Range (τAB) = Range (τAB). 

The following remark shows that the mapping τAB
 is not * - derivation. 

 

Remark (5.1.2):- 

Since τAB
 (X + Y) = A* (X + Y) B + B (X — Y) A 

=A*XB+A*YB+BXA+BYA 

 = A*XB + BXA2 + A*YB + BYA 

  =  τAB (X) + τAB (Y), 

Now, X τAB (X) + τAB
 (X) X* 

= X (A* XB+BX A) + (A* XB+B X A) X*. 

So,  (X2) = A*X 2 B +B X2 A, 

then , τAB (X2) ≠ XτAB (X)τAB (X) X* . 
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(5:2): The Range of τA
 :- 

In this section, we study and discuss the properties of τA 

Define the mapping τ : B (H) → B (H) by: 

τ (X) = τA (X) = (A*) 2 X + XA2 + tAXA , X  B(H). 

Where A is a fixed operator in B (H) and t is any scalar. 

It is clear that the map τA is a linear map. Also, the map τA is 

bounded, since 

||τA|| =  || (A.*)
2 X + XA2 + tAXA || ≤ ||(A*)2

 X|| + ||XA2|| + ||t||AXA|| 

≤ ||(A*)2 ||||X || + ||X |||| A2 || + ||t ||||A |||| X ||||A||  

≤ ||A2 ||||X || + ||X||||A2|| + || + ||t||||X ||||A2||  

≤ (2 + ||t||) ||A||2 ||X|| . 

Let M = (2 + |t|) ||A||2 ≥ 0 . 

SO ||(A*)2 X + XA2 + tAXA ||≤ M ||X|| . 

then τA is bounded .  

The following steps show (Range (τA ))*  ≠ Range (τA ) 

(Range (τA))* = {((A*) 2 X +XA2 + t A X A)*, X  B (H)} , 

= {X*((A*) 2)* + (A2)* X* t (XA)* A*, X  B (H)}, 
={X*A 2+ (A*) 2 X* + tA* X* A*, X  B(H)}. 
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Let X1 =X* 

{(A*) 2. Xi +X1 A2 + t A* X1 A*, X1  B (H)} ≠ Range (τA ) 

Also, α Range (τA )= α ((A*) 2 X+XA 2 + t A X A), X  B (H)}, 

= {α (A*) 2 X+ α X A2 + t A (α X) A, X  B (H)}, 

= {(A*) 2 (α X) + (α X) A2 + t A (α X) A, X  B (H)). 

Let X1 = αX 

 

= {(A*) 2 X1 + X1 A2 +t A XI A, X1 E B (H)} 

= Range (τA ).  

The following remark shows the mapping τA is not derivation. 

Remark (15.2.1) : 

Since τA (X Y) = (A*) 2 (XY) + (XY) A 2 + τA (X Y) A, for all X, 

Y  B (H) and 

X τA A (Y) = X (A)2Y + X Y A2+ X t A YA.  

Also , τA
 (X) Y = ( (A*) 2 X +XA 2 + tA XA)Y  

                         = (A*)2 X Y + XA2Y + t AX AY. 

Then we can deduce that τA (XY) ≠ X τA (Y) + τA (X) Y. 
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Now, the following remark shows the mapping τA is also not * - 

derivation. 

Remark (5.2.2):- 

Since τA
 (X+Y) = (A*) 2 (X +Y) + (X+Y)A2 + tA(X +Y) A 

= (A*) 2X+ (A*) 2 Y+ XA2 +Y A2 +tAXA+tAYA 

              = (A*)2 X + XA2 + tAXA+ (A*) 2 Y+YA 2 +tAYA 

                = τA (X) + τA (Y). 

Now, 

X τA (X) + τA ( X) X* = X (A *)2 X + X2 A2 + tXAXA+ (A*)2XX* + 

X A2 X* t AXAX*. 

So, τA (X2 ) 
≠ X τA (X) + τA

 (X) X* 

 

Then τA is not * - derivation, 
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(5.3) : The Range of τtA 

In this section, we study and discuss the range of τtA
 , where 

τ (X) = τtA (X) = A* X + t X A, X  (H) , 

where A is a fixed operator in B (H), t is any scalar. The map τtA is a 

linear map. 

τtA (αX1+ βX2) = A* (αX1 + βX2)+ t(αX1 + βX2)A 

= αAX1 +βA
*X2 + tαX1A + tβX2A 

= αA* X 1 + αtX1A + βA*X 2 + βtX2A 

= α (A*X 1+ tX1A) + β(A*X 2 + tX2A) 

   = ατtA(X1) + βτtA(X2) . 

Also, the map τtA is bounded since, 

|| τtA || = ||A* X + tXA || ≤ ||A* X|| + ||t||||XA|| 

≤ || X || [(||A* || + ||t||) ||A||] . 

But A  B (H) and ||A*|| = ||A|| , thus || τtA|| ≤ M ||X|| , where 

M = (1 + |t|)||A|| , so τtA is bounded. 
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The following remark shows that the mapping τtA
 is not derivation. 

Remark (5.3.1):- 

Since τtA (XY) = A* (XY) t (XY) A, for all X, Y  B (H) 

and X τtA (Y) = X A* Y + t XYA. 

Also, τtA (X)Y = A* XY + t XYA. 

Then, one can deduce that τtA (XY) ≠ X τtA (Y) + τtA (X)Y. 

it is easily seen that the mapping τtA is not * - derivation. 

Remark (5.3.2):- 

Range (τtA)*  ≠ Range (τtA) . 

Now, we have the following proposition. 
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Proposition (5.3.1) :-  

α
 Range (τtA) = Range (τtA). 

Proof:- 

α
 Range (τtA) = {α(A*X + t X A), X  B (H)}, 

= {A* ( α X) + t (α X) A, X  B (H)}.  

Let X1 = α X, then: 

α
 Range (τtA ) = {A* X 1 + t X1 A, X1  B(H)} 

= Range (τtA) . 

(5.4): The Range of ρAB : 

Define the mapping ρ :B (H) → B(H) by: 

p(X)= ρAB (X) = A*  BX + XBA , X  B(H) 

Where A and B are fixed operators in B (H), and A* is the adjoint of 

A. 

The map ρAB is a linear, 

in fact ρAB(αX1 + βX2) + A*B(αX1 + βX2) + (αX1 + βX2) BA 

  = αA*BX 1 + βA*BX 2 + αX1BA + βX2BA 

  = α (A*BX 1 + X1BA) + β(A*BX 2 + X2BA) 

  = α ρAB(X1) + β ρAB(X2) . 
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Also, the map ρAB
 is bounded, since: 

||ρAB|| = ||A*BX + XBA ||  ≤ ||A* BX|| + ||XBA|| 

     ≤ ||X||[2||AB||] , 

thus, ||ρAB|| ≤  M ||X|| ,where M= 2 ||AB||  , 

so, ||ρAB|| is bounded. 

The following remark shows that the mapping PAB is not derivation. 

Remark (5.4.1):- 

Since ρAB
 (XY) = A* B (XY) + (XY)-I3A, ∀ X, Y  B (H) 

and X ρAB
 (Y) = XA*B(Y) + XYBA. 

Also, ρAB
 (X) Y = A* BXY + XBAY. 

Then we can get that: 

ρAB (XY)  ≠ X ρAB (Y) + ρAB (X) Y. 
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Proposition (5.4.1) : 

(1) Range (ρAB)*  = Range (ρAB), if B is a self-adjoint operator.  

(2) α Range (ρAB)= Range (ρAB). 

Proof:- 

(1)Since Range (ρAB)*=  {(A* BX + XBA)*, X  B(H)}, 

= {A* B* X* + X* B* A, X  B(H)}. 

Since B is a self - adjoint operator, then: 

Range (ρAB)* = {A* B X* + X* BA, X  B (H)}  

= {A* B X1 + X1 BA, X1  B(H)}, 

where X1= X*. Therefore, Range (ρAB)* = Range (ρAB) 

(2) α Range (ρAB) = {α (A*BX + XBA) : X   B(H)), 

= {A*B ( αX) + (α X) BA: X  B(H)},  

= {A*B X1 + X1 BA: X1  B (H)}, 

where X1 =  αX, then :  

α
 Range (ρAB) = Range (ρAB). 

Remark (5.4.2):- 

The mapping ρAB
 is not * - derivation. 
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(5.5): The Range of JAB:- 

Define the mapping J: B (H) → B (H) by: 

J (X) = JAB (X)= BAX + XAB, X  B (H) , 

where A and B are fixed operators in B(H). 

The map JAB is linear. 

Also, the map JAB is bounded, Since ||JAB|| ≤  M||X|| , where  

M = 2||AB|| . 

Remark (5.5.1):- 

JAB (XY)  
≠ JAB (Y) + JAB (X) Y. 

According to above remark, the mapping JAB is not a derivation. 

Proposition (2.5.1):- 

(1)  Range (JAB)* ≠ Range (JAB). 

(2) α Range (JAB) = Range (JAB) 

Proposition (5.5.2):- 

If A and B are self - adjoint operators, then: 

Range (JAB)*  = Range (JAB). 

The proof of above propositions directly from definitions: 
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Remark (5.5.2):-  

JAB(X2) # XJ AB(X)+ JAB(X) X * 

According to the above remark, the mapping is not * - derivation. 

 

 (5.6): The Spectrum of τAB 

In this section, we study the relation between the spectra of LA*  

RB
 RIB LA with the spectra of A* , B and A respectively. 

Where LA*(X) . A*X , RB(X)=XB , R1B(X)=BX , and L A(X) =XA 

Let B(B(H)) be the Banach algebra of operators of B(H) considered 

as a Banach space. 

 

Definition (5.6.1), [11] :  

Let X be a Banach space over € , and let T  B(H), define : 

σπ(T) ={λ  € ; T- λ I is not bounded below } 

σπ(T) is called the approximate point spectrum of T. 

 



 94

An important subset of σπ(T) is the point spectrum or eigen values X 

of T which we denoted by σp(T)  where, 

σπ(T) = { λ  € : Ker (T- λ I) ≠ {0} } . 

Also, we define σπ(T) ={ λ  € ; T- λ I is not subjective} , 

σπ(T) is called the defect spectrum of T 

Notation (5.6.1) , [21] :  

For A , B G B(H) , X is any Banach space , Let 

1. σ (A)+ σ (B) = {α + β : α  σ (A), β  σ (B) }, 

2. σπ (A)+ σπ (B) = {α + β : α  σπ (A), β  σπ (B) }, 

3. σπ (A)+ σπ (B) = {αβ : α  σπ (A), β  σπ (B) } , 

4. σδ (A)+ σδ (B) = {α + β : α  σδ (A), β  σδ (B) } , 

5. σδ (A)+ σδ (B) = {αβ : α  σδ (A), β  σδ (B) } . 

 

In the following theorem we give the relation between the parts of 

spectrum of the sum of two operator A and. B define on a Banach 

space X and the stun of the spectrum . 
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Theorem (5.6.1),[22] :- 

If A , B  B(H), and AB = BA, then 

   (i) σπ (A + B) ÷ σπ (A) + σπ (B) 

(ii) σπ (AB) ÷ σπ (A) σπ (B) . 

Corollary (5.6.1),[23]:-  

If A , B  B(H) and AB = BA then : 

 (i) σπ (A+ B) ÷ 
σπ (A) + σπ (B) 

     (ii) σπ (AB) ÷ σπ (A) σπ (B) . 

In [22] , Herro proved that if X is a Hilbert space H then theorem 

(5.64) and corollary (5.6.1) become 

Remark (5.6.1) :-  

If A , B  B(H) and AB = BA then 

1. σπ (A + B) = σπ (A) + σπ(B) and σπ (AB) = σπ (A) σπ(B) . 

2. σπ (A +B) = σπ (A) + σπ (B) and σπ (AB) = σπ (A) σπ (B) . 
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Now, define the mapping L and R from B(H) into B(B(H)) Such that 

LA(X) = AX 

RB(X) =XB A ,B  B(H) . 

Now we return to our problem, we want to relate the spectra of LA and 

RB with the spectra of A and B , respectively. 

Lemma (5.6.1), [23] : 

Let A , B  B(H) , then : 

 1. σπ (LA) = σπ (A) , σδ (RB) + σπ (B) . 

 2. σδ (LA) = σδ (A) , σπ (RB) + σδ (B) . 

According to above properties ,consider the following 

Corollary (5.6.2)  

1. σπ (τAB) = σπ (A*) σπ (B) - σδ (B) σδ (A) . 

2. σδ (τAB) = σδ (A*) σδ (B) - σπ (B) σπ (A) . 
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  :الخلاصة 

  :لى ثلاثة محاور رئيسية الهدف الرئيس من هذا العمل يمكن تقسيمه إ  

ــــا بتحســــين بعــــض المبرهنــــات لإثبــــات وجــــود وحدانيــــة الحــــل لمعــــادلات  –المحــــور الأول  قمن

  ) .المستمرة(ليبانوف أو شبه ليبانوف المؤثرة 

  

دراســة حــل معادلــة ليبــانوف المــؤثرة لأنــواع خاصــة مــن المــؤثرات ، وكــذلك  –المحــور الثــاني 

لمعـــادلات ليبـــانوف وسلفســـتر المتقطعـــة المـــؤثرة لأنـــواع دراســـة ومناقشـــة وجـــود وحدانيـــة الحـــل 

  .خاصة من المؤثرات بالإضافة إلى دراسة المدى 

  

  .هو دراسة المدى لمعادلات شبه لينانوف لأنواع خاصة من المؤثرات  –المحور الثالث 
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