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Abstract

The main theme of this work can divided in main asects:

First, We modify some theorems to ensure: the exest and
unigueness of the solution for the Lyapunov andQu&yapunov
operator equations. As well as we study and disthus®xistence .
and uniqueness of the solution of the discrete;ti8dvester and

Lyapounv operator equations.

Second, the range of he Quasi - Lyapunov equatistudied and ,
we study the nature Discrete - tithe as well as,stindy of the range

Tag andty are introduce.

Third the nature of the solution for the LyapunowdaQuasi -
Lyapunov operators (Continuous - time) are studmdspecial -

types of operators.

Also, we study the nature solution and the rangefgeneralization

continuous - tithe Lyapuriov operator equations.
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Introduction :

Thu Lyaptinon operator equation are of two typdde first type is
continuous - time Lyapunov operator equation whikes the from
A*X + XA = W , where A and W are known operatorsfided on a
Hilbert space H , X is the known operator that mustdetermined ,
[3],and [5].

The second type is discrete - time Lyapunoy operjoiation which
takes A*XA — X =W , where A and W are known operatdefined
on a Hilbert space H , and X is the unknown opesatihat must be
determined , [5].

This work concern with special types of the linegerator equation
namely the Qusai - Lyapunov operator equation.

These types of linear operator equations have maatl life
applications in physics biotechnology , [3] and [4This work is
study. of the nature of solution foe the linear jhyaov, and Qusai -
Lyapunov operator equations.

This thesis consist of five chapters in chapter pmee recall some
definitions basic concept and some properties wharehimportant for
the discussion of our later results

In Chapter two we give some modifications for $seter -
Rosenblum theorem to guarantee the existence agdaness foe the
solution of discrete - time Lyapunov equation wadl as the natural

of the solution for this equation operators studied



In Chapter three we study the nature of the saludibthe continuous
— time Lyapunov and Qnsai - Lyapunov operator @qoatfor special
types of operators as well as the study of thgeait, , tag and 1k .
where :

a (X) = A* X + XA

1,(X) = AX + X*A

Ha (X) = AX + XA

X | B(H) and A is a fixed operator in H .

In Chapter four , we discuss the nature of solufamgeneralization
of continuous - time Lyapunove operator equations.

In Chapter five , we study and discuss the rangiefgeneralization

of continuous - time Lyaponove operator equations.



Chapter One

Basic Operators Concepts



CHAPTER ONE

BASIC OPERATORS CONCEPTS

(1.1) Basic Definitions:

In this section, we give some definitions which emportant for

the .study of our later results.

Definition (1.1.1), [11]:

Let V be a vector space real or complex then Vaiked a normed
space if there is a norm function ||.|| =¥R defined on it, and if this
space is complete with respect to this norm, théngalled a Banach

space, thus a Banach is a complete normed vedoesp

Definition (1.1.2) [11]:

A Banach space V is called a Banach algebra ifethsr a
multiplication <u, v> = uv VXV which is linear elcfactor in
particular is a ring (not necessary communicatarg] [|uv|k || ||v]| all

u,vinV.



Definition (1.1.3) [11]:

The space V is called amner product space if there is an inner
function <...> : V x V— R or C defined on it. If this space is
complete with respect to the norm induced by thier product, then

it is called a Hilbert space.

Definition (1.1.4) , [10] :

Let X and Y be vector spaces. A map B:X Y is called a linear

operator (map) if

B(AX + pz) =ABx + uBz ,0x,z/Xand W, pJF.

Definitions (1.1.5) , [5]:

An equation of the form

LX) =W, e, (1-1)

is said to be an operator equation, where L and ré/ kaown
operators defined on a Hilbert space H, and X i timknown

operator that must be determined.

In equation (1-1), if the operator L is linear thiairs equation is said
to be linear operator equation. Otherwise, it 1Isoa-linear operator

equation.
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Definition (1.1,6),[7] :

An operator A on a Hilbert space H is said to &k sadjoint if
A*=A .

Definition (1.1.7) [7]:

An operator . A on Hilbert space H is said to lskew — adjoint
ifA*=-A .

Definition (1.1.8), [7]:

An operator A on a Hilbert space H is said to loenral if
A*A=AA*. That is, <A*AX, x> = <AA*X, x> for all x in H.

Definition (1.1.9),[71]:

An operator A on a Hilbert space H is said to bpdmormal if A*A -
AA* > 0. i.e.,

<(A*A - AA¥) x, x> >0 0Ox ] H.

Definition (1.1.10), [7]:

An operator A on a Hithert space H is said to bg&ranormal if

||A%X||> || A*x || , for every unit vector x in H. Equivalently &1 -

paranormal if ||A || ||x |B [|A*x|[ for every x in H.
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Definition (1.1.11), [7] :

An operator A on a Hilbert space is said to beobimal if A*A

commutive with AA*. i.e.,
A*AAA* = AA*A*A .

Definition (1.1.12), [7] :

An operator on a Hilbert space H is said to besonoamal if A

commutive A*A. i.e.,

AA*A = A*AA,

Definition (1.1.13), [7]:

An operator A on a Hilbert space H is called- operator if A*A

commutive with (A + A*). i.e.,

A*A (A + A%) = (A + A¥) A A,

Definition (1.1.14), [17]:
If B(H) is a Banach algebra with identity and JAB(H), the
spectrum of a, denoted by(A), is defined by:

6 (A)={c]:A-alis notinvertible }.
The left spectrum g, (A) , is the set

{a ] F: A—alis not left invertible}, the right spectrum

o (A) , is the setd ] F : A -al is not right invertible }.
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Definition (1.1.15), [15]:

Let X be a Banach space over C , and IdtB{H), defined
o, (A) = {L ] C: A -Alis not bounded below}

o, (A) Is called the approximate point spectrum ofAx important

subset of

or (A) is the point spectrum or eigenvalues ofof(A)

where:c, (A)= {1 | C : ker (A -Ml) O{0}}
Also, definedo; (A) = {L ] C : ker (A -\l is notsurjecrive}, o; (A) is

called the defect spectrum of A .

Definition (L1.16), [7]:

An operator A on a Hilbert space His said to be gach if, given any
sequence of :vectors {x,}. such that ||Xn]| is mad) {AXn}, has a

convergent subsequence.

Definition (1.1.17), [2]:
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A linear mappingt from a ring R to itself is called a

derivation, ift (ab) = ar (b) +t (a)b for all a, b in R.

Definition (1.1.18), [2]:

Let R be a ring, a Jordan derivation f :(-R R is defined to be an
additive mapping satisfying f{g af(a) + f(a)a . Now, let R be *- ring,

l.e., a ring with involution *.

Definition (1.1.19), [2]1:

A linear mapping T : R— R is called Jordan *- derivation, if for all

a, b/ R andt(@) = at + 1 (@)a*. If R is a ring with the trivial
involution, a* = a, then the set of all Jordan dation is equal to set

of all Jordan derivations.

Definition (1.1.20), [7]:

An operator A on a Hilbert space H is said to lmnstric if A*A =1,
that is ||AXx]|| = ||X|| , for all x in a Hilbert sj@aH.

(1.2) Basic Properties and Theorems :
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In this section, we give examples and elementappgies and

theorems of operator.

Proposition (1.2.1), [9]1:

1. If A'is a Heimetian (self - adjoint) operator thet A = A*, then A

IS normal.

2. If U is a unitary operator, that is, U*U= UU* =then U is normal.

3. If Ais a skew - Hermition (skew - adjoint), that iA* = - A, then

A is normal .

Note that, the converses of statements (1), (2),(&n

Example (1.2.1):

Let | : H— H be the identity operator on a Hilbert space dtd
A=2il. Therefore, A* = -2il Hence, A*A =AA* . Thisis normal

operator, but it is not self - adjoint, since[AA*. Also, A is not

unitary operator because A*A = AAF]I.

Example (1.2.2):

As for (3) in proposition (1.2.1), let

A:(l 2} one can get A* :El 2}
2 1 2 1
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Hence A*A = AA* and A is normal, but A is not a ske adjoint

Proposition (1.2.2), [1]:

Let A be an operator on a Hilbert space H, then filllowing

statements are equivalent:
1. Ais normal.

2. ||AX]| = ||A*x]| for all x in a Hilbert space H

Proposition (1.2.3), [8]:

1. A'is normal operator if and only if AX is normal for eachh in C .

2. If A is normal and A exists, then Ais normal.

3. Let A and B be normal operators, then AB is norihAB* = B*A.

4. Let A and B be normal operators, then A + B is rarihAB*
=B*A.

Theorem (1.2.1), [8]:
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If 6(A) N (-A) = @ , then A and A commute with exactly the same

operators.

Remark (1.2.1).[8]:

Note that ifc(A) N o (-A) O® , then theorem (1.2.1) may not hold.

Example (1.2.3):

Let A= [2 ;j and B:(i B . It is easy checked that:

A’B = BA?, |, (A) = {1, 1} ands (-A) = {-1, 1}, therefore
c (A) No (-A) U® , but A does not commute with B.

Now we give the following corollary that was memsal as remark
(1.2.1).

Corollary(1.2.1).[8]:

If A%is normal and (A) N o (-A) = @ , then'A is normal.

Proof:
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Since A is normal and commutes with A, then A*A A?A*. Since
c (A) N o (-A) = @, then by theorem (1.2.1), A*A = AA* and A is

normal.

Proposition (1.2.4).[12]:

Let A be an operator on a Hilbert space H. Thew, fibilowing

statements are equivalent:
1. A'is hyponormal.
2. ||A*X|| < ||AX|| o x ] H.

Proposition (1.2.5), [12]:

Let A be a hyponomial operator, then :

1- A - Al is hyponormal for alk in C .

2. If At exists, then A is hyponormal.

Proposition (1.2.6), [12]:

Every nonzero hyponormal operator compact operatoormal.

Remark (1.2.2),[12]:

18



Every hyponbrmal operator is * - paranormal. Intigaiar, every

normal operator is * - paranormal.

Proof:

Let T be a hyponormal operator and let x in a Hillspace H
such that ||X|| = 1, then [[T3]|[Tx|f. Also ||[T*x[f< || TX]| .

IIT*x|F < [ITx|f < ||TX]| . Hence T is a* - paranormal operator.

Remark (1.2.3).[8].:

1. Every normal operator is binomial.
2. Every quasi normal operator is binormal.

Proposition (1.2.7) , [8]:

1. Ais binomial if and only if A* is binomial.

2. If A'is binormal and a is any complex scalar, thénis binormal.

3. If A is binomial, then Alis binonnal if A exists.

Proposition (1.2.8), [12]:

Let A behyponormal and binomial operator , thehig& hypononnal

for n>

Proposition (1.2.9), [8]:
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Let A be an operator on Hilbert Space H , then thdowing

statements a equivalent:
1. Ais a© - operator.
2. AT(A'A — AA*Y) = (A*A - A*A) A,

Proof:

Let A be a© - operator, then A*(A*A - AA*) = A*A*A -
A*AA*,

By © - operator, we get A*AA - AA*A = (A*A - AAA.
Conversely, since A*(A*A — AA*) = (A*A — AA*)A, then
A*A(A+A*) = A*AA + A*AA* = A*A*A + AA*A = (A*+A)
(A*A) Hence A is aO - operator.

Proposition (1.2.10), [8]:

If Ais a© - operator and Aexists, then Ais a© - operator.

Remark (1.2.4):

1. Every normal operator is@ - operator is ® - operator.

2. Every quasinormal operator i€a- operator .
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1. Let A be a normal operator, that is (A*A = AAthen
(A*A) (A + A¥)= A*AA + A*AA*,
=AA*A + A*A*A,

= (A + ANAA*. Thus

A is © - operator .

2. Let A be a quasi noromal operator, then

AA*A) = (A*A) A . Therefore
(A*A)A* = A*(A*A). thus

(A*A) (A+A*) = (A*A)A + (A*A)A*,
= A(A*A) + A*(A*A),
T(A*+A) (A*A).

Hence A is @ - operator .

Proposition (1.2.11),[7]:

Let A and B be operators on a Hilbert space H,:then
l. If A'is compact Operator and V is any operatamrt AB is compact.

2. If A'is compact operator and a is any scalan theis compact.

3. If A and B are compact operators then A + B is caotp
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Chapter Two
Solution of Discrete — Time

Operator Equations
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CHAPTER TWO
Solution of Discrete - Time

Operator Equations

(2.1) Some Types of Operator Equations:

(1) Continuous and discrete - time Sylvester operajaaBons:
AX £ XB = o C, (2.1)
AXB £ X = ¢ C. (2.2)

(2) Continuous and discrete - time Lyapunnov operajoagons:
A*X — XA = o C, (2.3)
A*XA-X=0aC (2.4)

Where A, B and C are given operators defined onlzeH space H ,

X is an operator that must be determinedx any scalar, and A* is
the adjoint of A,[4]

In general, these operator equations may haveauogos, infinitive

set of solutions or no solution.

In this section, existence and uniqueness of thdiso of eq. s (2.2)
and (2.4), when B is an invertible operator in €42), and A is an

invertible operator in eq. (2.4) are studied.
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The discrete - time Sylvester equation can be fioamed
into continuous - time Sylvester operator equatias

follows:

Multiply eq. (2.2) from the right by , then eq.Z2becomes:
AXBB™"'+ XB* =0 CB"

AX +XB™'=q CB"
Let CB' = W, the above equation becomes :
AX + XB t=aW (2.5)

Also, the discrete - time Lyapunov operator equmatan be transform

to continuous - time Lyapunov operator equatiofodsws:

Multiply eq. (2.4) from the right by A then eq. (2.4) becomes :

A*XAA 1 — XA' =0 CA* (2.6)
Let CA'=W, then eq. (2.6) becomes :

A*X — XA =a W. (2.7)

Recall that, the spectrum of the operatoe A(A) {A ] C : (A =Al) is
not invertible}, and B(H) is the Banach space dflmundedinear

operators defined on- the Hilbert space H, [5] .
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Sylvester - Rosenblum Theorem(2.2.1),[5].

If A and W are operators in B(H) (panach algebralbfoounded
linear, operators defined on a Hilbert space Hichghat
c (A) N (B) = g, then the. operator equation AX - XB €

(continuous - time Sylvester operator equation)dasique solution

X, for every operator C.

The following corollaries give the unique solutifmm the operator eq.
(2.5).

Corollary (2.2.1):

If A and B are operators in B(H) , and"Bxists such that
s(A)No(BY) =g,

then, the operator equation AX - XB= o W, has a unique solution

X for every operator W B(H).

Corollary (2.2.2):

If A and B are operators in B(H) , and'Bxists, such that

o(A) N o(-B") = @ , then the operator equation AX + XB a W,

has a unique solution for every operator|\B(H) .
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Proposition (2.2.1):
Consider eq. (2.5) ¢ (A) N o (BY) = @ then the operator

{/g _g_\fq is defined on Ko H, is similar to the operat({rg _g_l} _

Proof:
Sinces (A) N o (BY) = @, then by Sylvester - Rosenblum theorem ,

the operator equation AX — XB= aW, has a unique solution X. Also,
I X][A o] _[A -aw]| [ X
0o 1]|0 B o B | |0 |

| X . .. A 0 . ..
But {o J is similar to the operator |, SE)O —B‘l} IS similar to
A -aW
o B™* |’

Corollary: (2.2.3)

Consider eq. (2.55 (A) N6 (-B™) = g, then

The operator{g __Cgﬂis defined on Ko H,is
Similar to the operatom _g_l}

Notes:

(1) The converse of the above proposition is not tnugeineral.
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@) If the conditions(A) N o(B™) = g , fails to satisfied then the
operator equation AX - XB=a W, may have no solution.

3) If the 'conditions (A) N (-B™) = g, fails to satisfy then

The operator equation AX + XB= a W, may have no. solution.

Now, the following Corollary gives the unique - stbn the operator
ed. (2.7)..

Corollary: (2.2.4)
If A an operator in B(H) , A exists such that

s (A*) N o(A™) = @, then eq. (2.7) has a unique solution X, for

every operator W.

Proposition: (2.2.2)

Consider eq. (2.7), if (A*)) (A™") = g , then the

Operatorﬁ; _?ﬂ Is defined on Ho H, is similar to

The operato{A* 0_1}
0 A
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Proof:

Sinces (A*) N o (AN= g , then by Sylvester — Rosenblum

theorem, eq. (2.7) has a unique solution. Also

o s al=ls W Y

I X]._. . [A* 0 |.
But is invertible , sg RIE
0 1| (0 A
I [A* —aW
Similar to . }
0 A

28



Notes:
(1) The converse of the above proposition is not tnugeineral.
@) If the conditions (A) N o (A™) = g, failsto Satisfiedhen eq.

(2.7) may have one solution; an infinite numbesalitions or it

may have no solution.

(2.3) The Nature of The Solution For The Discrete - Time

Lyapunov Operator Equations

In this section , we study the nature of the sotufor special types of
the linear operator equation , namely the discretiene Lyapunov

equation.

Proposition: (2.3.1) , [2] :

If A is a normal operator and “Zexists, then A is normal .

Proposition: (2.3.2) , [2] :

If A is a hyponormal operator, and'&xists, then Ais hyponormal.

29



Remarks: (2.3.1)

(1) If A, A, and W are self adjoint operators , the eq. (2riay
or may not have a solution. Moreover, if it hasoluson then it

may be non self - adjoint.

This remark can be easily observed in matrices.

2) Consider eq. (2.7) , if W has self - adjoint operathen it is

not necessarily that X = X* .

@ 1f A, At and W are skew - adjoint operators, then eq. (2.7)

has no solution.

Proposition: (2.3.5) , [2]
(M) If Ais a self - adjoint operator , then A is noima

) If A is skew - adjoint operator , then A is noimal.

Remark: (2.3.2)
Consider eq. (2.7) ,

(1) If A and W are normal operators , then the soluois

not necessarily normal operator.

) If W is noimal operator and A is any operator rthieis

not necessatrily that the solution X is normal ofmra
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Remark: (2.3.3)

(1) Consider eq. (2.7) , if W is compact operator ntide, A*, and

X are not necessarily compact operators.

@ If A or W or A* compact operator, and the solution of eq. (2.7)

exists, then it is not necessarily to be compact.
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Putnam - Fugled Theorem: (2.3.1) , [1]

Assume that M, N, T B(H) , where M and N are normal.

if MT = TN then M*T = TN*

Definition:(2.3.1), [1] :

An operator M is said to be dominant if
II(T- 2)*x || (T-2)x||, for all Zs (T) and xJ R

Definition: (2.3.2) [1] :

An operator M is called M - hyponormal operator if

| (T—2* [l IM|I(T - 2)x || , for 2C and x/ H.

Theorem: (2.3.2) , [3]:

Let M be dominant operator and N* is M - hyponorrmopérator.
Assume that MT = IN for some TB(H) then M*T = TN*.

Theorem: (2.3.3) , [3] :

Let A and B be two operators that satisfy Putnd&ugled condition.

The operators equation AX - XB = C has a solu¥dnand only if
{A O} and B ;} are similar operator on;H1 H..

0 B

As corollaries , we have
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Corollary : (2.3.1)

If A is normal and A exists , then operator equation

A*X + XA ™ = o W has a solution if and only m _z_l} IS similar to
A* -aW
0 -A'|’

Corollary : (2.3.2)
If A and B are normal operators and Bxists then the operator

equation AX — XB' = aW has a solution if and only if

A0 Tl A* —aW
., | IS similar to Ll
0 -B 0 -B

The following corollaries follows directly from theorem (2.3.2) .

Corollary : (2.3.3)

If A is a dominant or M — hyponormal operatof Axists . Then

, the operator equation A*X + XA= o W

Has a solution if and iﬁ; —i‘l} and{A* —a\N}

0 -A"

are similar operators on;H1 H, .
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Corollary : (2.3.4)

If A and B are dominant or M — hyponormal operaaod B

exists . Then the operator equation AX —X8o W has a solution

A 0 A -aW .
If {o —B‘l} and{O —B"l} are similar operators on k1 H, .

Proposition :
Consider eq . (2.7) , if A and W are orthogonatrapors , and

A exists and W is also , orthogonal operator , &edsblution X of

eq. (2.7) is unique then this solution is an orthwa) operator .

Proof :

Consider the operator equation
A*X+XAT=W,

(A*X = XA * = W+,

Since W is an orthogonal operator (W* ="\implies that
W = (WH*

X*A + (A )EX* = W |

[X*A + (A H*X*x = wH]

Since A is an orthogonal operator (A* =*A
ATX) T+ (X T AR = (W) T

A*(X*) T+ (X TAT=W .
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Then (X*)* = X, so X* = X*.

Therefore , X is orthogonal operator .

Proposition : (2.3.7)

Consider eq . (2.7) , if A is unitary operator &ds orthogonal
operator and the solution of eq. (2.7) is unigtheen this solution is an

orthogonal operator .

Proof :

Consider the following linear operator equation
A*X + XA =W,

(A*X = XA ) = W

X*A + (A )EX* = W |

(XA + (ATX) T = (W)™

AT T+ (X T [AT] = (W)
Since A is unitary operator then A* ='A
So, A* (X*)™ + (X*) AT = (W),
Since eq. (2.7) has a unique , then

X = (X*)™* = (X1)* . Therefore , X* = X!

implies that X is a orthogonal operator .

35



Then (X*)* = X, So X* = X*.

Therefore , X is orthogonal operator .

Proposition : (2.3.7)

Consider eq. (2.7) , if A is unitary operator afds orthogonal
operator and the solution of eq. (2.7) is unigtheen this solution is an

orthogonal operator .

Proof :

Consider the following linear operator equation
A*X + XA =W,

(A*X + XA H* = W |

X*A + (A )X = WH |

(XA + (ATX) T = (W)™

AT (X)) T+ (XA = (W)
Since A is unitary operator then A* ='A
S0, A*(X*)™ + (X*)TAT = (W),
Since eq. (2.7) has a unique , then

X = (X*)* = (XY)* . Therefore , X* = X!

Implies that X is a orthogonal operator .
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Definition : (2.4.1) , [2]

Let R be a ring . A linear (additive) mappindgrom R to R is called a

derivation , if
t(ab) = ar(b) +t(a) b, foralla,binR .

Proposition : (2.4.1)

The mapra g(X) = AX — XB™tis a linear map .

Proof :

Sinceta g(aXy + fX5) = A(X1 + BXy) - (@Xq +BXy) B,
=aAX; + BAX, - aX;B - BX, B,
=0AXy - 0X1B™ + BAX; - BX,B?
=a(AX 1 — X;BY) + B(AX, — XBY
=a taB(X1) + B ta(X2) -

Thentpgis alinear map .

Proposition : (2.4.2)
The mapra g(X) = AX — XB™ is bounded .
Proof :
Since |fcas || = [IAX — XBY{| < [JAX|| + [IXB|
< |IXIILIAIL + 1IB1]] -
ButA, B B (H), |ltagl|<M [IX|| , where M = (J|A]] + [[B) .
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Sotagis bounded .

The following remark shows that the mappinag is not derivation .

Remark : (2.4.1)

Sinceta g (XY) = AXY) = (XY)B*for X, Y | B (H)
and Xtag (Y) = XAY — XYB™ . Also ,

tag (X) Y = AXY — XB Y then one can deduce that
taB (XY) # 1ap(Y) + 1A (X) Y.

Definition : (2.4.2) , [2]
Let R be * -ring , i .e . a ring with involution.*The linear mapping

from R to R is called Jordan * - derivation ,
if foralla, b]R,
1 (&) = at (a) +1 (a) a*

Remark : (2.4.3)
The mapping:B (H) — B (H) defined by
T (X) = 1a5(X) = AX — XB™ is not Jordan * - derivation .

Now , we have the following simple proposition :
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Proposition : (2.4.3)
A Rang fag) = {a (AX = XB™) : X I B (H)},
={A (aX) — @X)B: X I B (H)} .
Let X; =aX , then
a Rang €as) = {ax1 — X:B: X1 I B (H)},

= Rangags -

Remark : (2.4.2)
in general Rangrf g)* # Rang €as) -

(2.5) The range ofta
In this section , we discuss and study the mapB (H) — B (H) ,

wheret (X) = t4(X) = A*X = XA ™, X 1B (H) .

Proposition : (2.6.1)

The mapra = A*X — XA ™ is a linear map .

Proof :

Sinceta (aX1 + PX2) = A*(aXq + BX2) — (@Xq +PX2) A™,
= A*X 1 + BA*X 5 —aX ;AT —BXLAT,
=a (A1 = XA™) + B (A2 = XAT)
=a1a (X1) + B 1a(X2)

Thent, is a linear map .

Proposition : (2.5.2)

The mapr, = A*X — XA is bounded .
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Proof :

Since |fea || = [JA*X — XA™| < [|A*X]| + [IXAY]
<|I XL TIAIL+ IR -

ButA,A' B (H), letM =||A]| +||A|| , then

l|ta [|SM || X || . Saxa is bounded .

Remark : (2.5.1)

ta(XY) = A¥(XY) = (XY)A ', forall X , Y IB (H) ,

and Xta (Y) = XA*Y — XYA ™.

Also ,ta (X)Y = A*XY — XA 'Y . Then one can deduce that
TA(XY) # X 1A(Y) + TA(X)Y .

Remark : (2.5.2)

The mappingr, is not Jordan* - derivation .

Now , we have the following simple proposition .
Propositions : (2.5.3)
a Rang €a) = Rang {a) .
Proof :
Sinced Rang €a) = {o (A*X = XA ™ : X |B (H)},
= {A*(aX) — (@X) A1 : X I B (H)} .

Let X; =aX , then

a Rang €a) = {A*X 1 — X;A™: X4 1B (H)} = Rang ¢,) .
Remark : (2.5.3)

Rang €a)* # Rang ¢a) .
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Proposition : (2.5.4)

Rang ¢») is linear manifold of operators in B (H) .

Proof :
It is known that rangth (X)) = {W : ta (X) =W , X ] B (H) .
(1) 0/ Rang €,) since X = 0/ B (H) } andz, (0) .
(2) Let W, , W, | Rang €.) we must prove W— W, ] Rang €,) .
Therefore [1X; | B (H) such that, (X;) = W; andOX, | B (H) .
such thatta(X2) = W, . Thus ,ta (X1 — Xp) = A¥(X 1 — Xp) — (X1 — Xo) A™
= (A= XA ™) — (A*X 3 — XA™)
=1a (X1) - 1A (X2) .
=W —W,.
Then W, — W, | B (H) such thata (X1 — Xo) = W; — W, . So,
W; —W, |Rang ¢a) .

Therefore , Rangef) is a linear manifold of operators .

Remark : (2.5.4)
If W | Rang €,) , then so does W* .

Remark : (2.5.5)

If W, , W, ] Rang €,) , then W , W, is not necessarily in Rang,] .
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Chapter Three
Lyapunov and Qusai —
Lyapunov Operator
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Chapter Three
Lyapunov and Qusai — Lyapunov

Operator Equations

In this section , we give some types of linearrafme equations :
(1) A special type of linear operator equationetathe formula ,
AX=XB=Y ..., (3-1)
Where A, B and Y are given operators defined éhllaert space H
and X is the unknown operator that must be deterchinThis linear
operator equation is said to be the Sylvester éoperaquation or
continuous — time Sylvester equation , [3], and [5

The author in reference [5] discussed the necgssad
sufficient conditions for the solvability of thisnkar equation .
Furthermore , he gave equivalent conditions forshie@ability of this

linear equation for special types of operators 4 Bn

(2) The linear operator equation of the form
AX + XA =W, oo, (3-2)
Where A and W are given operators defined on hédtilspace
H , and X is the unknown operator that must berdeteed . This
linear operator equation is called the Lyapunowvraioe equation , or
the continuous — time Lyapunov equation , [3] afid [
The author in reference [3] studied the necesandy sufficient

conditions for the solvability of this linear optaequation .
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(3) A special case of the continuous — time Lyapumperator

equation

AX + XA =W | oo (3-13)
Where A and W are known operators defined on Hilbpace .

H , and X is the unknown operator that must deteechi, [3] and [4] .

(4) The linear operator equation of the from

AX+X*A =W, i, (3-4)
Where A and B are given operators defined on bdtilspace H

, and X is the unknown operator that must be detexth, X* is the

adoint of X . These linear operator equation (3)-alkd (3 — 4) are

called quasi — Lyapunov operator equations or ggasbntinuous —

time Lyapunov linear operator equations .

(3.2) The Quasi — Continuous — Time Lyapunov Operar

Equations :

The continuous — time Lyapunov equations , arehratadied
because of it's importance in differential equatiand control theory ,
[6] . Therefore , we devote the studying of thegjuacontinuous —
time Lyapunov operator equations .

Now , dose eq . (3.2) and eq. (3.4) have a soltition
If yes , is it unique ?
To answer this question , recall the Sylvester sdRblum theorem ,

[5] .
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Sylvester — Rosenblum Theorem (3.2.1) :
If A and B are operators in B (H) such tl|m(A) | o (B) = @ , then

eq. (3 — 1) has a unique solution X for every ofoers .

According to the Sylvester — Rosenblum theorem vesehthe

following corollary .

Corollary (3.2.1) :
If A is an operator such that(A) |o (- A) =@ , then eq. (3—-3) has a

unique X for every operator W .
Proposition (3.2.1) :
Consider eq. (3.3) , F (A) |o (-A) =@, then

The operatom __Vﬂ is defined on Ko H,is similar to{g 0} .

Proof :
Sinceo (A) | o (-A) = @. Then by Sylvester — Rosenblum theorem eq.

(3.3) has a unique solution X , also :

o 1o W =lo “al o S

But P x} IS invertible S({A O} IS similar to{A _W} )
0 |1 0 0 -A
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The converse of the above proposition is not trugeneral as we see

in the following example .

Example (3.2.1) :

letH =/¢,(®) = {X =(><1,x2,...):i|xi|2 <oo,XiDC}

Define A:H—- Hby A(X., %, ...)=(%,0,0,..). Consider eq. (3.3)
, Where W=(X,%,..)=(0,%,0,..). Then X=U is a solution of
this equation since (AX + XA) (X X, ...) = (AU + UA) (%, X%, ...)
AO,%,%,...)+U((x,0,0,..)+(0,x,0,..)=WX

On the other hand , U is solution of eq . (3-3) and

| UTTA 0] _[A -w] [1 U
{o J [o —A}_{O —A} {o —A}'
Therefore ,{A _W} is similar to{A O} .
0 -A 0

Moreover O is an eigenvalue of A and X = (0, X...) is the
associated eigenvector .
Therefore , Qg (A) |6 (-A) and hence Qo (A) |0 (-A) # P .
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(3.3) The Nature of the Solution for the quasi — adinuous — time

Lyapunov operator equations :

In this section , we study the name of the solubbreq. (3 — 3) for

special types of operators .

Remark (3.3.1) :
if W is self — ad joint operator , and A is any ogder , then eq. (3 -3)

may of may not have solution . Moreover , if it lmsolution then it
may be non self — adjoint .

This remark can easily be checked in matrices .

next if A and W are self — adjoint solution for €8-3) ?

The following theorem gives one such conditions .

Theorem (3.3.1) :
Let A and W be positive self — adjoint operators .

If 0 t o (A), then the solution X of eq. (3-3) is selfdjaint .

Proof :

Since Ot G (A) , then it is easy to see that(A) | o (-A) = ® and
hence eq. (3-3) has a unique solution X by Sylvest®osenblum
theorem . Moreover ,

(AX + XA)* = W+ |

AXX* + X*A* = W* |

Since A and W are self — adjoint operators , th&i A X*A =W .
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Therefore , X* is also a solution of eq. (3 — By. the uniqueness of

the solution one gets X = X* .

Proposition (3.3.1) :

If A and W are self — adjoint operators , and tlodutson of the

equation AX + X* A = W exists , then this solutighis a unique .

Proof :

Consider eqg. (3-4) ,
AX X*A =W

Since W is self — adjoint operator ,
(AX + X*A)* = W* |
A*(X*)* + X*A* = W* |

Since A and W is self — adjoint operator ,

AX + X*A = W, since the solution exists , thenixa unique .
The following proposition shows that if the operatA and W

are skew — adjoint , and the solution of eq. (34&ists then this

solution is unique .
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Proposition (3.3.2) :

If A and W are skew — adjoint operators , and thlatgon of eq/ (3-4)

exists , then the solution X is a unigue .

Proof :
Consider eq . (3-4)
AX + X*A =W,

Since W is a skew — adjoint operator , so
- (AX + X*A)* = - W* |
- (AF(X¥)* + X*A*) = - W* |
(-A¥)X + X*(-A*) = - W* |

Since A and W are skew — adjoint operators , then
AX + X*A =W,

Since the solution X exists , then the solutiors’aiunique .

Remark (3.2.2) :

If A is a self — adjoint operator and W is a skewdjoint . Then the

solution X of eq . (3-4) is not necessarily exists

Remark (3.3.3) :

If W is a self — adjoint operator , and A is anyemgior , then the

solution X of eq . (3 -4) is not necessarily seHdjoint operator .
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The following example explain this remark .

Example (3.3.1) :

Consider eqg. (3-4) , take W = W*{:(l) 8} ,and A :E 8} :

AX + X*A =W,
After simple computations one can gets

a O
2

Wherea is any scalar .

Remark (3.3.4) :

If W is a skew — adjoint and A is any operatorertlihe solution X of

eq. (3-4) is not necessarily exists .

The following example explain this remark .

Example (3.3.2) :

Consider eq . (3-4) , take W[:O 2} and A :{2 0}
-2 0 30
AX + X*A =W,
After simple computations one can gets

X> =1 and x= 0 which has no solution .
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Proposition (3.3.3) , [13] :

If A and W are skew — adjoint operators and eq2)(Bas only one

solution then this solution is also a skew — adjoin

Proof :

Since A* = - A and W* = - W then it easy that toeck

A*(- X*) + (- X*) A = W and since the equation hasly one solution
then X* = - X..

Remark (3.3.7) , [13] :

Consider eq. (3-2) , where the solution of it exisif A and W are

normal operators then this solution is not necdgsawrmal .

This fact can be seen in the following example .

Example (3.3.4) :
let H=/,(C) , consider eq. (3-2) , where A =il and W =Therefore

, - X + iIX =0 . It is easy to check the unilaé shift operator
defined by :
Ui, X2, ..)=(0,%,X%Xs,...), 0(X1, X%, ...)]¢,(C)

IS a solution of the above equation which is nonmad operator .

Putnam — Fugled Theorem (3.3.2) , [5] :
Assume that M, N, T B (H) , Where M and N are normal . If MT =
TN then M*T = TN*.
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Recall that an operator T . is said to be domirfant

(T = 2)*X||[< M || (T = 2) x|| for all Z & (T) and xJ H . On the
other hand , operator T is called M — hyponormarator if
(T =2)*X||[<M ||(T=2) x|| forall ZlCand x]H, [1] .

In[ ], the above theorem was generalized asvoiig .

Theorem (3.3.3) , [5] :
Let M be a dominant operator and N* is an M — hygromal operator .

Assume MT = TN for some TB (H) then M*T = TN* .

A corollaries , we have .

Corollary (3.3.1) , [13] :

If A is normal operator then eq. (3-2) has a soluif and only if

A~ 0 lissimilarto] ® ~W| .
0 0 -A
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Corollary (3.3.2) , [13] :

If A is dominant or a M — hyponormal operator théare operator

equation defined by eq. (3-2) has a solution if anky if

ﬁ) 0} and ﬁ) __Vﬂ are similar operator H1 H,.

Corollary (3.3.3) , [13] :

If Ais a dominant or a . M — hyponormal operatoert the operator

eq. (3-2) has a solution a solution if and only if

B _OA} andh _W} are similar operator Ho H, .

Remark (3.3.8) ,[13] :

If A (or W) is compact and the solution of eq. (BeXists then it is not

necessarily compact .

As an illustration to this remark , consider thbkd@ing examples .

Example (3.3.5) :

Consider the equation A*X + XA = A* + A, where A a compact

operator on an infinite dimensional Hilbert space IHis clear that X

= | is a solution of the above operator equationctviis not compact .
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Example (3.3.6) :

Consider eq. (3-2) , where W = 0 . It is clear ttinet zero operator is

compact . Given A =il , then X = | is a solutiohem. (3-2) which is

not compact .

Proposition (3.3.4) :

If A is a compact operator then the eq. (3-4) is\pact .

Proof :

Since A is compact then X*A is also compact .

Since A is compact then AX is also compact .

Since AX and X*A are compact then AX + X*A is conqgta

Therefore W is compact .

(3.4) On The Range of, :
In this section , we discuss the infectivity of thap

7n - B(H) — B (H) and show that in general the mgpis not
necessary one —to — one .
Define the mapping: B (H) — B (H) by
1(X) =14 (X) = A*X + XA, X ] B (H)

Where A is a fixed operator in B (H) .
It is clear that the mafy is a linear map , infact
Ta (X1 + BX3) = A* (aX1 + BXy) + (0X1 +BXy) A

=a 1a (X1) + B 7a(X2)
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Also , the map, is bounded , since

It Il = [| A*X + XA < [[ A XA ITTITA* I+ 1AL
But A B (H) and || A*|| = || A ||, thusth (X) [IsM || X ||,
Where , M =2 ||A|| , so\is bounded .

The following remark shows that the mappinags not a derivation .

Remark (3.4.1) , [15] :

Sinceta (XY) = A* (XY) + (XY) A for all X , Y 1B (H) and % (Y)
= XA *Y + XYA . Also , 1a(X) Y = A*XY + XAY . Then one can
deduce thaty (XY) # Xta (Y) + ta(X)Y . To prove this , let H =

¢,(C) and A = U , where is a unilateral shift operatdhenty(X) =

BX + XU , where B is the bilateral shift operator .

In this casey is not derivation . To see this , consider

1u(IU) = 1y(U) = BU + U and

Ity(U) + (DU =1y (U) + (DU,
=BU+ U+ (B+UU,
=2BU+2U =2 (BU + ).
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It is easily to seen that the mappmngB(H) — B(H) defined by
©(X) = 1a(X) = A* + XA, X | B(H) is not Jordan * - derivation .

To see this see the above example .

Next , we discuss the infectivity of the map and show that , in

general the map: B(H) — B(H) is not necessary one — to — one .

Proposition (3.4.1) , [13] :
Consider the map (X) = ta (X) = A*X + XA . If A is a skew —

adjoint operator thety, is not one — to — one .

Proof :

Since A is a skew — adjoint operator , then .

ker @) = {X | B(H) : AX = XA} . Therefore I ker ,) and thus, is
not one —to — one .

Now , we have the following proposition .
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Proposition (3.4.2) , [13] :
1) Rangeis)* = Range €,) .
2) . range ta) = Rangety,) .

Proof :
1) Since Rangerf)* = {X*A + A*X* , X ] B(H)}. Then,
Range {a)* = {X*A + A*X* | X | B(H)}. where X = X* .
Therefore , Range/)* .
2) a Range £a) = {a(A*X + AX) , X |B(H)} .
= {A* (aX) + (@X)A , X |B(H)}.

Let X; =aX , then
Range {a) = {A*X 1 + X;A , X; ] B(H)}

= Range1y) .

(3.5) On The Range opa :
In this section we study and discuss the rangg ofwhere

p(X) = pa(X) = AX + X*A , X |B(H).
Where A is a fixed operator in B(H) .
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It is clear that map, is a linear map . Also thep, is bounded , since

[ pall = IAX + X*A[< [|AX]] + [XA[l< TAL] X+ X[ TIAI
Since ||X*|] = |IX]] .

Therefore , plal| < 2||All |IX]] ,

Let M =2 ||[A|>0, so |pa ||< M [|X]| . Therpa is bounded .

The following steps shows that Rangg)t # Range (a) ,
Range fa)* = {(AX + X*A)* , X | B(H)},

= {A*X + X*A* | X |B(H)},

# Range fa) -
Also , o Range () = {a (AX + X*A) , X | B(H)}

= {A(aX) + (@X)* A, X ] B(H)}

LetaX = X3
o Range ) = {AX 1 + Xi* A* | i | B(H)}

= Ranged,) -

The following remark shows the mappipg is not — a derivation .
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Remark (3.5.2) :
Sincepa (XY) = A(XY) + (XY)* A

= A(XY) + Y*X*A |
forall X, Y ]B(H),
and Xpa(Y) = X [AX + Y*A],

= XAY + XY*A .

Also ,pa(X)Y = (AX + X* A)Y ,

= AXY + Y*AY .

Then one can deduce that :
Pa(XY) # Xpa(Y) + pa(X)Y .
Now the following remark . shows the mappipgis also not * - a

derivation .

Remark (3.5.2) :

Sincepa(X+Y)=AX+Y)+ (X+Y)*A,
=AX + AY + X*A + Y*A
= AX + X*A + AY + Y*A

=pa(X) + pa(Y) .

Now ,
Xpa (X) pa(X) X* = X[AX + X*A] X*,

= XAX + XX*A + AXX* + X* AX* |
So pa(X?) = (AX? + (X')* A)
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and pa(X?) # Xpa(X) + pa(X)X* .

thenp, is not* - a derivation

(3.6) On The Range ofix (X) :

In this section , we study and discuss the rang¥) , where
ua=pa(X) = AX + XA, X IB(H)

Where A is a fixed operator in B(H) .

It is clear that the map, is a linear map . Also , the map, is
bounded , since dh|| = | AX+ XA KM || X ],
where M = 2 ||Ak O . Thenu, is bounded .
The following steps shows that Rangg)t # Range |(a) .
Range [ia)* = {(AX + XA)* , X ]B(H)},
= {A*X* + X*A* | X ] B(H)},
# Range ) -
Also , o Rang (1a) = { o (AX + XA) , X ] B(H)},
={A(oX) + (@X) A, X |B(H)},
LetaX = X4
= {AX1+ XA, X1 | B(H)},
= Rangey(n) .
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The following remark shows that mappingis not a derivation .

Remark (3.6.1) :
Sincepa(XY) = A(XY) + (XY)A .
For all Xua(Y) = X(AY) + X(YA),
= XAY + XYA.

Also , ua(X)Y = AXY + XAY ,
Then one can deduce that :

Ha(XY) # Xpa(Y) + pa(X)Y .
Now , the following remark shows that the mappigs also not* - a

derivation .
Remark (3.6.2) :
Sincepa(X+Y)=AX+Y)+(X+Y)A,

= AX + AX + XA + YA,

= (AX + XA) + (AY + YA),

=pa(X) + pa(Y) .

Now ,
Xpua(X) + pa(X)X* = X[AX + XA] + [AX + XA]X*

= XAX + X5A + AXX* + XAX*
S0, Ha(X2) = (AXz + XoA) ,
and Ha(X2) # Xpa(X) + pa(X)X* .
thereforeu, is not * - a derivation .
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Chapter Four
Generalization of the

Lyapunov Equations
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The operator equation of the form :

A*XBXBXA=W, .............. (4-1)
Where A , B and W are given operator defined on M is the
unknown operator that must be determined , andsAthe adjoint of
A.

The above operators equation is one of the genatiah

continuous — time Lyapunov operator equation .
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(4.2) : The Nature of The Solution for Generalizatbn Lyapunov

Equations :

Now , the nature of the solution for more geneoélthe
continuous — time Laypunov operator equation andistl for special

types operators .

Proposition (4.2) :

If B and W are self — adjoint operators , and tperators
equation (4.1) has only one solution X then thisitson is also self —

adjoint ,

Proof :
Consider to operator equation
A*XB + BXA=W,
(AXB + BXA)* = W* |
A*X*B* + B*XX*A* = W*
A*X*B + BX*A =W,
Since X is a unique solution .

So X = X*, then is self — adjoint .
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Proposition (4.2.2) :
If B is a skew — adjoint , W is a self — adjoimtdaA is any

operator and if the equation (4.1) has only onaitsoi then this

solution is a skew — adjoint .

Proof :
Consider equation (4.1)
A*XB + BXA=W,
(A* XB + BXA)* = W*
A*X*B* + B*X*A = W* .
A*X* (-B) + (- B)X*A = W* |
A*(-X*)B+B (-X*)A=W.
Since X is a unique solution , so X = - X*

Then X is a skew — adjoint .
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Proposition (4.2.3) :

If B and W are skew — adjoint operators , A is apgrator and
if the equation (4-1) has only one solution theis golution is self —

adjoint .

Proof :
Consider equation (4.1) ,
A* XB + BXA=W,
- (A* XB + BXA)* = - W*
- B¥X*A — A*X*B* = - W*
A*X* (- B)* + (- B*) X*A = - W*
A* X*B + BX* A=W .

Since X is a unique solution , then
X*=X.
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Proposition (4.2.4) :

If B and W are self — adjoint operators , A is aperator and if

the equation (4.1) has only one solution and tbigt®n is also self —

adjoint .

Proof :
Consider equation (4.1) ,
A*XB + BXA =W,
(A*XB + BXA)* = W* |
A* X* B* + B*X*A = W*,
A*X*B+BX*A=W.
Since X is a unique , so X* = X
The X is a self — adjoint .
Proposition (4.2.5) :
If B is a self — adjoint , W is a skew — adjoit is any operator and if

the equation (4.1) has only one solution then gbisition is a skew —

adjoint .

Proof :

Consider (4.1) ,
A*XB + BXA=W,
- (A* XB + BXA)* = - W*
A* (- X*) B* + B* (- X*) A = - W*,
A*(-X*)B+B (-X*)A=W.

67



Since equation (4.1) has only one solution , so XX , the X is a

skew — adjoint .

Remark (4.2.1) :
Consider equation (4.1) , If B is a self — adjqaiiW is a self —

adjoint and A is any operator , Then X is not neaeg self — adjoint .

Remark (4.2.2) :
Consider equation (4.1) , If A and W are self Joad operators

, B is any operator , Then X is not necessary-salfjoint .

Remark (4.2.3) :

If A and B are compact operators and the soluXaf equation

(4.1) exist , then this solution is not necessamgact .
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The X is a self — adjoint .

Proposition (4.3.5) :

If B is a self — adjoint , W is a skew — adjoirV, is a skew —
adjoint , and A is any operator and if the equat{dr}) has only
solution and this solution is also self — adjoint .

Proof :
Consider equation (4.4) ,
A*XB+BXA=W,
-(A*xX B + B X A)* = - W* |
A* (- X¥) B* + B* (- X*) A =-W*,
A*(- X)*B + B (- XA=W.
Since equation (4.4) has only one solution , so-XX* , Then X is a

skew — adjoint .

Remark (4.3.1) :
Consider equation (4.4) , if

(1) B is a skew — adjoint , W is a self — adjoint , akds any
operator . Then X is not necessary self — adjoint .
(2) A and B are self — adjoint operators , B is anyrafue . The

X is not necessary self — adjoint .
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Remark (4.3.1) :

If A and B are compact operators and the solutbequation

(4.4) exist , then this solution is not necessamgact .

Example (4.3.1) :
Consider the following operator equation
A*xB+BxA=A*B + BA,

Where A and B are compact operator , it is cleat K = | is a

solution of the above operator equation , butiascompact .
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Now , we study that nature of the solution of tiperator equations .
(A%) %X + XA% + tAXA = W, (4.9)
and AX + XA? + tAXA =W , (4.10)
the following proposition shows if A and W are self adjoint
operators and if equation (4.10) has a unique isoluthen this

solution is self — adjoint .

Proposition (4.3.6) :
Consider equation (4.10) w , If A and W are sel@adjoint

operators then X is self — adjoint .

Proof :
Consider AX + XA’ +tAx A=W ,t/R
(A%X + XA% + tA X A)* = W* | t R

X*(A*) 2 X* + tA*X*A* - W .
Since A and W are self — adjoint then A = A* and2W* .
So, X* A%+ APX* + tAX* A=W | t IR
APX* + X*A 2 + tAX*A = W .

Then X in self — adjoint .

Remark (4.3.3) :
Consider equation (4.10) , If A is self — adjoimpeoator and W is any

operator then solution X is not necessary selfjeiadoperator .

The following example the above remark .
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Example (4.3.2) :

Consider equation (4.10) ,take A = A*% ﬂ , W = E ﬂ
Any operator ,and t =2
Equation (4.10) becomes :

AZX + XA2 + 2AXA = W

{1 o} {xi xz} J{xl xz} {1 o} +2{1 OMXl xz} {1 o} :{2 o}
0 1] |X, X, X, X,/ |0 1 0 1]|X, X,/ |0 1 31
After simple computation , the solution of equationcase take the

form :

X = # X* , wherea any arbitrary number .

0

AWN IR

Remark (4.3.4) :
Consider (4.9) ,

(1) If Ais is self — adjoint operator then the solatiX is not

necessary self = adjoint .
(2) if W is self — adjoint operator then the solutioniX not
necessarily self — adjoint .

To explain the above remarks see example (4.3.2) .

Remark (4.3.5) :
Consider equation (4.9) , if A and W are normalrapz's , them the

solution X is not necessary exists .
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The following example explain this fact .
Example (4.3.3) :

Consider equation (4.9) , AE‘ _ab} ,b#0.

Notes that A~ A* in general .

A normal , but not self — adjoint .

Take
A:{_O 1} ,W:F _3} andt=2.
10 3 1
After simple computations , we get
-2X, = 2%, =1 and 22X+ 2X3=-3
-2X,—2X% =1 and -2%—2%,=3

Has no solution .

The question now is pertinent , does equation) (#a3 a normal
solution . To answer this question consider thim¥ahg example :
Example (1.3.4) :

Consider equation (4-9) and take W = 0, equatie8)(becomes :
(A*)*X + XAZ+ tAXA =0

It is Cleary X =0 and 0O is a normal operator .

Now . We study the nature of the solution of equat{4.9) and
equation (4.10) for compact operator .
The following proposition shows if the operatorsdAdompact then the

operator W is also compact .
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Proposition (4.3.7) , [21]
Consider equation (4.10) , if A is compact opardbten W is

compact operator .

Proof :

Equation (4.10) , can be written as

AAX + XAA + tAXA = W, since A is compact operatdhen AA is
compact (i.e. A compact) . So & is compact . A is compact
operator then XA is compact and XAA is compact , SOA? is
compact . AX is compact then AXA is compact andXifAis compact
(t any scalar) .

So A’X + XAZ? + tAXA is compact , then W is compact operator .

74



Remark (4.3.6) :
Consider equation (4.10) , if A and W are compaoérators

then the solution X is not necessarily compact ajoer.

The following example explain to above remark .

Example (4.3.5)
Consider the following operator equation :
A%X + XA? + tAXA = (2 + t)A? , where t is any scalar .

It is clear that X = | is a solution of the aboyeecator equation , but |

is hot compact operator .
Now , we study and discuss the nature of the swiudf equation (4.6)

and eq. (4.8) for special types of operators .

Proposition (4.3.8) :
If B and W are self — adjoint operators , A is aperator and if the

equation (4.6) has only one solution , then thiktgmn is self —

adjoint .

Proof :
Consider equation (4.6) ,
A*BX + XBA=W ,
(A*BX + XBA)* = W* |
X* B* A* + A* B* X* = W* |

Since B and W are self — adjoint,

75



Then A* BX* + X*BA=W .
Since equation (4.6) has only solution , so X* 5 then X is self —

adjoint .

Proposition (4.3.9) :

If B and W are self — adjoint operators , W ikavs — adjoint ,
and A is any operators and if the equation (4.8)drdy one solution ,

then this solution is skew — adjoint .

Proof :
Consider equation (4.6) ,
A*BX + XBA=W,
- (A* BX + XBA)* = W+ |
- X*B*A + A* B*X* = - W* |
A* B* (- X*) + (- X*) B*A = - W* |
A* B (- X*) + (- X*) BA= W .
Since equation *4.6) has only one solution , so X , then X is a

skew — adjoint .

Proposition (4.3.10) :
If B is a skew — adjoint operator , W is a seHdjoint operator ,

A is any operator .

Equation (4.6) has only one solution , then X skew — adjoint .
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Proof :
Consider equation (4.6) ,
A* BX + XBA =W,
(A* BX + XBA)*,
X*B*A + A*B*X* = W* .
Since B is a skew — adjoint , then
A*B (-X) + (- X*) BA=W..
Since equation (4.6) has one solution , so X = -¥ten X is skew —

adjoint .
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Remark : (4.3.7) :
Consider equation (4.6) , If A and W are self joad operator ,

b is any operator . Then X is not necessarily-selfljoint .

Remark (4.3.8) :
If A and B compact operators and the solutioncpfagion (4.6)

exist , them it solution is not necessarily compact

this fact can easily be seen in example (4.3.1) .
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Chapter Five
The Range of The
Generalization Lyapunov

Operator Equation
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The Range of The Generalization Lyapunov Operatpraions

In This Chapter , we study the range of the gdizataon of

continuous — time Lyapunov operator equations .
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(5.1) : The Rang ofrpg :
In this section , we study and discuss the pragsedft,g .
Recall that , a linear mappingfrom a ring R it self is called a
derivation , ift (ab) = a (@), foralla,bin R, [8] .
Define the mapping = B(H) — B(H) by
1(X) = 1ag (X) = A*XB + BXA , X | B(H).

Where A and B are fixed operators in B (H) .

It is clear that the mapg is a linear map

in fact

Tap(aX1 + BX3) = A* (aXy + BX3) B + B (X1 +BX3) A
= aA*X 1B + BA*X ,B + aBX,A + BBX,A

= o (A*X 1B + BX;A) + B(A*X ,B + BX,A)

= atap (X1) + Pras (X2) -

Also , the mapg is bounded , since :

[ tae || = |[A*XB + BXA||< ||A*XB]| + [[BXA]|
< [IXIII2][AB|]

thus [ftas ||< M [|X]] , where M = 2 ||AB]| ,
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So0,1a5 IS bounded.

The following remark shows that the mapping is not a derivation.

Remark (5.1.1):-

Sincetag (XY) = A* (XY) B + B (XY) A,
and X tag (Y)=X.A*YB+XBYA.
Also, Tag (X)Y=A*XBY+BXAY.

Then we can deduce that

Tag (XY) # X188 (Y) + a8 (X) Y

Proposition (5.1.1):-

(1)Range{ag)* = Range {ag), if B is self— adjoint

(2) a Range {ag) = Range {ag)

Proof:-

(1) Since Rangerfg)* = {(A* XB+B X A) *, X |B (H)}.

Then Rangetgg)* = {(XB)* A + A* (B X)*, X ]B (H)}, =
{B*X*A + A* X* B*, X | B (H)},

= {A*-X* B*+B*X*A. X |B(H)}.

Since B is self - adjoint (B = B*), then
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Range fag)* = {A* X*B + B X* A, X B (H)},
={A* X 1 B + BX; A, X; /B (H)},

where X* = X; Therefore, Range{g)* = Range {ag).

(2) a Range {ag) = {0 (A*XB + BXA) , X B (H)},
={ A*( aX)B + B(*X)A, X B (H)},
= { A*X ;B +BX,A , X; I B (H)},

where X, =a X, then

o Range {xg) = Range {xg).

The following remark shows that the mappinig is not *_derivation.

Remark (5.1.2):-

Sincetas (X + Y) = A* X +Y)B+B (X—Y)A

=A*XB+A*YB+BXA+BYA
= A*XB + BXA2 + A*YB + BYA
= tag (X) +1a8 (Y),

Now, X tag (X) + Tag (X) X*

= X (A* XB+BX A) + (A* XB+B X A) X*.
So, () = A*X?B+B X?A,
then ag (X?) # X™B (X)™® (X) X* .
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(5:2): The Range ofrp :-

In this section, we study and discuss the propedie,
Define the mapping: B (H) — B (H) by:
t(X) = 14 (X) = (A%)2X + XAZ+ tAXA | X | B(H).
Where A is a fixed operator in B (H) and t is acglar.
It is clear that the mafy, is a linear map. Also, the map is
bounded, since
[lall = 11 (A)% X + XA®+ tAXA || < [[(A)*X]| + [IXAT] + [[tIAXA]
< ICAS X+ 11X TAL+ e A XA
< 1S X 11+ 1IXINIAL+ 1]+ (TR
< (2 + |1t IARIIXIL -
Let M=(2+[t]) ||Af>0.
SO |[(A*FX + XAZ+ tAXA |I< M ||X]| .

thent, is bounded .

The following steps show (Range ())* # Range+{x)

(Range £1))* = {((A*) 2 X +XAZ+t A X A)*, X IB (H)},
= {X*((A*) 3+ (AY X"t (XA)* A*, X 1B (H)},
XA 2+ (A¥) 2X* + tA* X* A% X | B(H)).
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Let X1 =X*

{(A*) % Xi +X1 A%+t A* X1 A*, X1 | B (H)} # Range{a )

Also, o Range £ )= o (A*) 2 X+XA% +t A X A), X ] B (H)},
= {(],(A"‘)2 X+ aX A%+t A (aX) A, X J B (H)},

= {(A*) *(a X) + (@ X) A*+ t A (@ X) A, X | B (H)).
Let X1 =aX

= {(A*) 2 X1 + X1 A2+t A XI A, X1 BB (H)}
= Range+x ).

The following remark shows the mappirgis not derivation.

Remark (15.2.1) :

Sinceta (X Y) = (A*) % (XY) + (XY) A% +15 (X Y) A, for all X,
Y /B (H) and
X 14 A(Y) = X (A)2Y + XY A% X t A YA.

Also ,ta (X) Y = ((A*)*X +XA® + tA XA)Y
= (ARX Y + XA%Y + t AX AY.

Then we can deduce that(XY) # X 1a (Y) + 14 (X) Y.
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Now, the following remark shows the mappingis also not * -

derivation.

Remark (5.2.2):-

Sinceta (X+Y) = (A%) 2 (X +Y) + (X+Y)A® + tA(X +Y) A
= (A%)°X+ (A%) 2 Y+ XA® +Y A% +AXA+HAYA
= (A*] X + XA® + tAXA+ (A*) 2 Y+YA® +AYA
Zp (X) + 14 (Y).
Now,

X 1a (X) + 14 (X) X* = X (A7) X + XZ A% + tXAXA+ (A%)2XX* +

X AZ X* t AXAX*.
So, T (X* ) £ X 1w (X)) + 1] (X) X

Thenta IS not * - derivation,
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(5.3) : The Range ofta

In this section, we study and discuss the range ofvhere

T(X)=ta (X) = A* X+t X A, X J(H),

where A is a fixed operator in B (H), tis any stallhe map, is a

linear map.
Tia (@Xq+ BX2) = A* (aXy1 + BX2)+ t(aXy + BX)A
= 0AX 7 HBA X5 + XA + XA

= aA* X 1+ atX A + BA*X , + [tX,A
= a (A*X 1+ tX,A) + B(A*X , + 1XA)
= ata(X1) + Pra(X2) .
Also, the map, is bounded since,
[tea || = [[A* X+ XA [|< [|A* X]| + [[t]][[XA]]
< (I XFLCA= T+ 1) AT -

But A |B (H) and ||A*|| = [|A|| , thusth||< M |[X]|| , where
M= (1 + |t])||A]] , S@w is bounded.
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The following remark shows that the mappwgs not derivation.

Remark (5.3.1):-

Sincety (XY) = A* (XY) t (XY) A, forall X, Y 1B (H)
and Xt (Y) = X A*Y + t XYA.
Also, 1ia (X)Y = A* XY + t XYA.

Then, one can deduce that (XY) #X 1 (Y) + tta (X)Y.

it is easily seen that the mapping is not * - derivation.

Remark (5.3.2):-

Range {)* # Range ) -

Now, we have the following proposition.
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Proposition (5.3.1) :-

a Range {a) = Ranget,).

Proof:-

aRange ) = {a(A*X + t X A), X | B (H)},
={A* (aX) +t (@X) A, X ] B(H)}.
Let X; = a X, then:
aRange a ) = {A* X 1 + t X; A, X; | B(H)}
= Range ) .

(5.4): The Range oppg :

Define the mappingp :B (H) — B(H) by:
P(X)= pas (X) = A* BX + XBA , X |B(H)

Where A and B are fixed operators in B (H), andigthe adjoint of
A.

The mappag is a linear,

in factpag(aXy + BX5) + A*B(aXy + X)) + (aXy + BX,) BA
=aA*BX 1 + BA*BX , + aXBA + BX,BA
=a (A*BX ; + X;BA) + B(A*BX , + X,BA)
=0 pas(X1) *+ B pas(X2).
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Also, the mapag is bounded, since:

lball = IA*BX + XBA || <[|A* BX|| + |[XBA]|
< |IX]I[21IABII]
thus, Pagl|< M [|X]| ,where M= 2 ||AB]|]| ,

S0, |pag]| is bounded.

The following remark shows that the mappingis not derivation.

Remark (5.4.1):-

Sincepag (XY) = A* B (XY) + (XY)-I3A, "X, Y JB (H)
and Xpag (Y) = XA*B(Y) + XYBA.
Also, pag (X) Y = A* BXY + XBAY.

Then we can get that:

pag (XY) # X pag (Y) + pas (X) Y.
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Proposition (5.4.1) :

(1) Rangefag)* = Range §ag), if B is a self-adjoint operator.
(2) a Range fag)= Range fas).

Proof:-

(1)Since Rangephs)*= {(A* BX + XBA)*, X | B(H)},
= {A*B* X* + X* B*A, X |B(H)\.

Since B is a self - adjoint operator, then:
Range fag)* = {A* B X* + X* BA, X /B (H)}

= {A* B X1 + X1 BA, X1 | B(H)},
where X1= X*. Therefore, Range g)* = Range fag)

(2) a Range fag) = {o (A*BX + XBA) : X |B(H)),
= {A*B (aX) + (@ X) BA: X ] B(H)},
= {A*B X1 + X1 BA: X1 | B (H)},
where X1 =aX, then :

a Range gas) = Range gag).

Remark (5.4.2):-

The mapping,g is not * - derivation.
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(5.5): The Range of Jg:-

Define the mapping J: B (H» B (H) by:
J (X) = &g (X)= BAX + XAB, X B (H),
where A and B are fixed operators in B(H).

The map 4 is linear.

Also, the map sk is bounded, Since jil|< M||X|| , where
M = 2||AB|| .

Remark (5.5.1):-

Jag (XY) # g (Y) + Jas (X) Y.

According to above remark, the mapping ik not a derivation.

Proposition (2.5.1):-

(1) Range (k)* # Range (ds).
(2) e Range (ds) = Range (k)

Proposition (5.5.2):-

If A and B are self - adjoint operators, then:
Range (dg)* = Range (&).

The proof of above propositions directly from défons:
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Remark (5.5.2):-

JAB(XZ) # XJag(X)+ Jas(X) X *

According to the above remark, the mapping is noti&rivation.

(5.6): The Spectrum ofrag

In this section, we study the relation betweensihectra of L

Rg Rlg La with the spectra of A* , B and A respectively.
Where Ly*(X)  A*X , Rg(X)=XB , R15(X)=BX, and LA(X) =XA

Let B(B(H)) be the Banach algebra of operators @1)Bonsidered

as a Banach space.

Definition (5.6.1), [11] :

Let X be a Banach space over € , and 1éB[H), define :
o(T) ={L 1€ ; T-1 l is not bounded below }

o.(T) is called the approximate point spectrum of T.

93



An important subset af,(T) is the point spectrum or eigen values X
of T which we denoted by,(T) where,
o(T)={L]€:Ker (T-L1) #{0}}.

Also, we defines,(T) ={ A ] € ; T-\ I is not subjective} ,

c,(T)is called the defect spectrum of T

Notation (5.6.1) , [21] :

For A, B G B(H), Xis any Banach space , Let
1.c(A)+s(B)={a+B:als(A),Blo(B)}
2.6, (A)+ o, (B)={a+P:alc, (A),Blo. (B)},
3.6, (A)+ o, (B) ={aB :a Jo, (A), B lo. (B) },
4.65(A)+ o5 (B)={a+B:alcs(A),plos (B)},

5.05 (A)+ 65 (B) ={aB : o o5 (A), B los (B) }.

In the following theorem we give the relation betnethe parts of
spectrum of the sum of two operator A and. B defimea Banach

space X and the stun of the spectrum .
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Theorem (5.6.1).[22] :-

If A, B ]B(H), and AB = BA, then
(i) 62 (A + B) + 05 (A) + 0, (B)
(ii) o (AB) + o (A) o, (B) .

Corollary (5.6.1).[23]:-

If A, B ]B(H) and AB = BA then :
(i) ox (A+ B) =0, (A) + 5, (B)

(il) oz (AB) + o, (A) o5 (B) .

In [22] , Herro proved that if X is a Hilbert spadethen theorem
(5.64) and corollary (5.6.1) become

Remark (5.6.1) :-

If A, B ]B(H) and AB = BA then
1.0, (A +B) =0, (A) + 0,B) andc, (AB) = o, (A) 6,(B) .

2.0, (A +B) =0, (A) + o, (B) ando, (AB) =, (A) o, (B) .
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Now, define the mapping L and R from B(H) into BkKB) Such that
La(X) = AX

Rs(X) =XB } A .B |B(H).

Now we return to our problem, we want to relatedpectra of |, and

Rg with the spectra of A and B , respectively.

Lemma (5.6.1), [23] :

Let A, B/B(H), then:
1.0, (LaA)=0% (A) , 05 (Res) + o (B) .
2.65 (La) =05 (A) , 0, (Re) + o5 (B) .

According to above properties ,consider the folloyvi

Corollary (5.6.2)

1. o (tag) = 6x (A*) 0, (B) -5 (B) o5 (A) .

2. 05 (tas) = 05 (A*) 05 (B) - 01 (B) 01 (A) .
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