
  

Mat. No. 14901 
 
 
 
 

  St Clements University 
 
 
 

Integrated Multi-Database 
Information Systems 

 

 

A Thesis Submitted to the St Clements University in  

 Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy in Computer Science 

 

by 

Haitham Sabah Hasan 
 

Supervisor 

Dr. Jane Jaleel Stephan   
 

 
 Feb                                                                                  Sufar 
2010                                                                                  1431 
 
 
 



  

 جمهورية العراق
 

 الجامعة سانت آليمنت
 

 
 قواعد بيانات متعددة لنظم تكامل

 المعلومات
 
 

 رســـالــــــة
ةادــات نيل شهــ آجزء من متطلبسانت آليمنتمقدمة إلى جامعة   

  علوم الحاسبات فلسفة في فيدآتوراه 

 
 
 
 
 
 
 
 
 
 
 
1431 2010 
 
 

من قبل
 هيثم صباح حسن

 بأشراف
 ة جين جليل اسطيفانالدآتور

لزبيدي



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

نا لِْمَلَك لا عِْبحانِْا سِْوٌالْقِ
 انَتْلمَا عْإلا مْ

 ميَكَْم الحَْليَعَ الْتَ أنَكَإنَْ
 



  

 
 
 
 
 
 

To my beloved Father 

The Teacher 

His taintless soul 

Resulted from soft touch of his 

gorgeous life 

Spent for the big Family 

 

Haitham 
 
 
 
 
 



  

Examination Committee Certification 

 

 
     We certify that we have read this thesis entitled”Integrated Multi-Database 

information System“and as an examining committee, examined the student 

“Haitham Sabah Hassan” in its contents and in what is concerned with it and 

that in our opinion it meets the standards of a thesis for the degree of Doctor of 

Philosophy in computer Science. 

 

 

Signature:                                                                                  Signature: 

Name:              Name: 

(Chairman)              (Member) 

Date:               Date: 

 

 Signature: 

 Name: 

                                     (Member) 

                                      Date: 

 

Signature:                                                                                 Signature: 

Name:                                                         Name: 

(Member)                                                                                  (Supervisor) 

Date:                Date: 
 
 
 
 
 
 
 

 



  

SUPERVISOR CERTIFICATION 
 

 
 
       I certify that this thesis entitled ”Integrated Multi-
Database Information System” was prepared under my 
supervision by Haitham Sabah Hasan at the University of 
St-Clement as a partial fulfillment of the requirements for 
the Degree of Doctor of Philosophy in Computer Science.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Signature: 
 

Name:      Assistant Professor Dr.Jane Jaleel Stephan 
 
Date:              /      / 2010 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 
 

          I Would like to express my gratitude to my supervisor                       

(Assistant Professor) Dr.Jane Jaleel Stephan For her support, 

and assistance during the whole phases of my research, and for 

the technical literature , she provided me with during the work. 

Her assistance and encouragement have contributed essentially 

to finishing this work.  

       Special thanks are due to my mother, and my relatives for 

their endless support, understanding, and encouragement, who 

had their part of suffering and sacrifice during the entire phrase 

of my research.  

 

Haitham 
 
 
 
 
 
 
 



  

Abstract 
 

           A multi database consists of a collection of autonomous local databases. 

Systems used to manage multi databases are called multi database systems 

(MDBSs). In such a system global transactions are executed under the control 

of the MDBS. Independently local transactions are submitted directly to a local 

Database system (LDBS) by local applications.  An Multi Database System 

should provide a mechanism to globally manage transactions. However global 

transactions are long- live and involve operation on multiple and autonomous 

local databases. Moreover MDBSs do not have any information about the 

existence and execution order of local transactions. The aim of this research is 

to propose a design that integrates three Heterogeneous multi databases with the 

same model relational but different software environments by doing the 

following: 

1- Accepts a query, determine the appropriate set of information sources to 

answer the query. 

2- Obtain results from the information so appropriate translation, filtering 

and  

         merging of the information and return the final answer to the user or   

         application (client). 

3- The server computer can manipulate transaction (Delete, update, search) 

while the client computer each of them can process (delete, update and 

search).    

    This system has minimum requirements (Pentium 4) with processor (1.8 

MHz) and memory (128MB) by the operating system (XP) and has been 

designed with Visual Basic 6.0 environment , Microsoft Access 2000, 

Microsoft visual FoxPro, SQL Server 2000 through LAN network . 

 

 

 



  

 ملخص البحث

 ه من قواعد بيانات        أن قواعد البيانات المتعددة تتكون من مجموعة مستقل

أن الانظمة التي تستخدم لتديرقواعد البيانات المتعددة تسمى انظمة قواعد البيانات المتعددة 

ان . في هذه الانظمة المعالجات تتعامل و تنفذ تحت سيطرة نظام قاعدة البيانات المتعدد

 بيانات المعالجات المحلية الغير معتمدة ترسل بشكل مباشر و مستقل الى انظمة قواعد

محلية من خلال تطبيقات محلية لذلك ان انظمة قواعد البيانات المتعدد يجب ان 

توفرميكانيكية للمعالجات العامة وعليه مثل هكذا تعاملات تتطلب حياة طويلة لقواعد بيانات 

محلية مستقله علاوة على ذلك ان انظمة قواعد البيانات المتعددة لا تحوي اي معلومات 

 .فيذ اوامر التعاملات المحليةحول وجود وتن

             الهدف من هذا البحث تقديم مقترح للتصميم الذي يقوم لدمج و معالجة ثلاثة 

تحت بيئة  برمجية ) العلائقي(مصادر من قواعد البيانات غير المتجانسة من نفس النموذج 

 :هذا بالاضافة الى دراسة موضوع المشروع الذي يهدف الى.مختلفة 

ر فهم آيفية الاستفسار عن مصادر المعلومات الغير متجانسة المنفذة في بيئة تطوي •

 موزعة

تحصيل النتائج من خلال مترجم متخصص لفلترت و دمج المعلومات وارجاع الاجوبة  •

 .النهائية للمستخدم او تطبيقات الزبون

) Server(عن طريق الحاسبة الخادم ) حذف و تحديث و بحث(تتم عمليات المعالجة  •

الاخرى فتتولى آل منهم عمليات التحديث و الاضافة و ) client(اما حاسبات الزبائن 

 .البحث الخاص بها

 

و  MHz 1.8)(ذات سرعة 4) Pentium(   لقد نفذ هذا المشروع على حاسبة 

 حيث تم تصميم النظام باستخدام لغة  XP بنظام تشغيل MB) 128(ذاآرة خزن 

 وقواعد البيانات تم بنائها باستخدام Visual Basic 6.0)(البرمجة فيجوال بيسك 

(Microsoft  Access 2000) و)(Microsoft FoxProو SQL Server)  

  LANمن خلال شبكة من نوع 2000)



  

Title Page No
Abstract i 
List of contents ii 
List of Abbreviations vi 
List of Figures viii 
List of Tables xi 
  

Chapter One General Introduction 
1.1 Introduction  1 

1.2 Database System 1 

1.3 Distributed Database System  3 

1.4 Types Distributed database system 3 

1.5 Integration of Database 4 

1.6 Literature Survey 5 

1.7 The Aim of thesis 9 

1.8 Thesis Layout 9 

Chapter two Distributed Database System &         
      Client Server Architecture 

2.1 Introduction 11 

2.2 Distributed Database Management System 11 

2.2.1 Services of DDBMS 13 

2.2.2 Function of DDBMS 13 

2.2.3 DDBMS Implementation alternatives 13 

2.3 Classification of Database Managements 

system 15 

2.4 Paradigms for Data Distribution 16 

Title  Page 
No 

2.5 Distributed Database System (DDBS) 16 



  

2.5.1 The Advantages & Disadvantages of  

DDBS Usage 18 

2.5.1.1 Advantages of DDBS 18 

2.5.1.2 Disadvantages of DDBS 22 

2.6 Distributed Database System Architecture 23 

2.6.1  Level of Distribution Transparency 24 

2.6.1.1 Global Schema 24 

2.6.1.2 Fragmentation Schema 24 

2.6.1.3 Allocation Schema 25 

2.6.1.4 Local Mapping Schema 26 

2.6.2 The Alternative of Client/Server Models 26 

2.6.3 Client / Server Architectures 29 

2.6.3.1 Advantages of Client-Server Architectures 30 

2.6.3.2 Problem with Multiple-Client/single 

Server 31 

2.7 Distributed Database system  Design 31 

2.7.1 Objective of  DDBS Design 32 

2.7.2 Strategies of DDBS 34 

2.7.2.1 Data Fragmentation 34 

2.7.2.2 Data Replication 36 

2.7.2.3 Replication Transparency 37 

2.7.2.4 Allocation 37 

Title  Page 
No 

2.8 Type of Distributed Database System  38 
2.8.1 Homogenous Distributed Database System 38 

2.8.2 Heterogeneous Distributed Database 38 



  

System 

2.9 Characteristics of a HDDBS 39 

2.10 The Aims of use Heterogeneous DDBS 39 

2.11 Problems of Heterogeneous DDBS  

2.11.1 Selection of a common Model and Data 

Manipulation Language 40 

2.11.2 Translation to the Common Data Model 

and DML 41 

2.11.3 Integration of Different Schemata 42 

2.11.4 Query Processing Problems 43 

2.12 Heterogeneous DDBS Architecture 44 

2.13 Strategies of Distributed Database Design   47 

2.13.1 Top-Down Approach  47 

2.13.2 Bottom-Up Approach  47 

Chapter 
Three 

Multi-Database Architectures  

3.1 Introduction 49 

3.2 Multi-Database Systems 49 

3.3 Database Schema 52 

3.3.1 The hierarchical Model 53 

Title  Page 
No 

3.3.2 The Network Model 54 

3.4 Multi-Database management 
Architectures 

55 

3.5 Multi-Database Design issues 56 

3.6 Simplified Design Steps 57 



  

3.6.1 Schema Translation 60 

3.6.2 Schema Integration 60 

3.7 Integration Techniques 60 

3.8 Query Processing in Multidatabase 
System 

63 

3.9 Query Processing Layers in Distributed 
Multi Database management System 

65 

3.10 Transaction management 68 

3.10.1 Transaction and Computation Model 69 

3.10.2 Multidatabase Concurrency Control 69 

3.11 Multi Database Integration 70 

Chapter Four The Proposed System Design 

4.1 Introduction 72 

4.2  System Components  72 

4.3 Heterogeneous or Multi-Database System 73 

4.4 Transaction Management 74 

4.5 Concurrency and Serializability 74 

4.6 The System Design 74 

4.6.1 Microsoft Visual FoxPro Environment    75 

4.6.2 Microsoft Access Environment 75 

Title  Page 
No 

4.6.3 Microsoft SQL Server 2000 76 

4.6.4 Microsoft Visual Basic Environment 77 

4.6.4.1 Data Controls 77 

4.6.4.2 Data Environment 78 

4.6.4.3 Data Access Objects (DAO). 78 

4.6.4.4 Crystal Reports Pro  78 



  

4.7  Main Block Diagram of Proposed System 79 

4.7.1 Master Database Flowchart 81 

4.7.2 Access Client Flowchart 84 

4.7.3 FoxPro Client Flowchart          87 

Chapter Five The System Implementation 

5.1 Introduction 90 

5.2 System Requirements  90 

5.2.1 Hardware Resources  90 

5.2.2 Software Resources   91 

5.3 The Proposed System Implementation 91 

5.3.1 Connection to Access Database 93 

5.3.2 Connection to SQL Server 2000 Database  96 

5.3.3 Connection to FoxPro Database 100 

Chapter Six Conclusions and Suggestion for Future Works 

6.1 Conclusions 104 

6.2 Suggestions for Future works 105 

References  107 

 



  

List of Abbreviations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CS Communication System 

DAO Data Access Object 

DB Database 

DBA Database Administrator 

DBTG Database Task Group 

DBMS Database Management System 

DC Data Communication 

DD Data Dictionary 

DDB Distributed Database  

DDBMS Distributed Database Management System 

DDBS Distributed Database System 

DDL Data Description Language 

DML Data Manipulation Language 

GTM Global Transaction Manage 

HDDBS Heterogeneous Distributed Database System 

LAN Local Area Network 

LTM Local Transaction Manage 

MDBS Multi-Database System 

MDBMS Multi-Database Management System 

RDF Resource Description Framework 

WAN Wide Area Network 

WWW World Wide Web 



  

 

List of Figures 
 

 

Figure 

No. Figure Title Page 
No 

2.1 Components of DDBMS 12 

2.2  DDBMS Implementation alternative 14 

2.3 Distributed Database System 18 

2.4 Reference Architecture for Distributed Database 25 

2.5 Client-server Model 28 

2.6 Client-Server Architectures 29 

2.7 Logical Two-Tier Client Server Architecture 30 

2.8 Four-Layered Architecture of  HDDBS 45 

2.9 Heterogeneous DDBS Architecture 49 

2.10 Top-Down Design Approach 48 

2.11 Bottom-Up Design Approach 48 

3.1 Multi-database architecture 51 

3.2 A Relational Database 53 

3.3 A hierarchical Data Model 54 

3.4 The network model 54 

3.5 Multi-Database Architectures 56 

3.6 Informal intuitive design steps 58 

3.7 Pure binary schema Integration 61 

3.8  Ladder Binary Schema Integration 62 

3.9 Nary schema Integration 63 

3.10 Structure of a Distributed Multi DBMS 65 

3.11 Query Processing Steps in Multidatabase 67 

Figure 

No. 
Figure Title Page 

No 



  

3.12 Distributed Multi-DBMS Transaction 69 

3.13 Database Integration Process 70 

4.1 The Components of the Proposed System 73 

4.2 Integration & Translation schema 80 

4.3 Proposed System Architecture 81 

4.4 Master DB Server Flowchart 83 

4.5 Access Client Flowchart 85 

4.6 FoxPro Client Flowchart 88 

5.1 Required Resources of the Proposed System 91 

5.2 Login Form 92 

5.3 The Proposed System Main Window 92 

5.4 About Window 93 

5.5 Electronic Library Splash Screen 93 

5.6 Electronic Library Window 94 

5.7 Add New Window 94 

5.8 Deleting Window 95 

5.9 Details Window 96 

5.10 E-Bank Splash Screen 97 

5.11 E-Bank Main Window 97 

5.12 Add New Account Window 98 

5.13 Deleting Account Window 98 

5.14 Update Window 99 

5.15 Search Window 99 

5.16 Report Window 100 

5.17 Phone Book Splash Screen 100 

5.18 E-Bank main Window 101 



  

List of Tables 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

5.19 Add New Contact Window 101 

5.20 Deleting Contact Window 102 

5.21 Update Window 102 

5.22 Search Window 103 

5.23 Report Window 104 

Table No.   Table Title Page No 
2.1 Sample Deposit Relation 34 

2.2 Horizontal fragmentations tables 36 

4.1 FoxPro-Phone Database Table 52 

4.2 Access database- Research Tables 53 

4.3 SQL Database –Research Table 53 



Chapter one                                                                                                       Overview                         
 

1 

Chapter One 

 Overview  
1.1 Introduction  
        Various types of database systems are currently in use today these 

information resources could be immediately made available for many users 

through existing computer systems. However since these systems often use 

different data models and different query languages users of one system cannot 

easily access the data stored in other systems. Thus there is a growing need for 

tools to maximize the reusability and interoperability of arbitrary computing 

services while keeping the autonomy of pre-existing databases in federated 

approach. One way of achieving interoperability among heterogeneous and 

autonomous DataBase Management Systems (DBMS) is to develop a multi 

database system which supports a single common data model and a single query 

language on top of different types of existing systems. The global schema of a 

multi database system is the result of the integration of schema exported from 

the underlying databases (i.e. local databases).  

       A global query language is made available to the users of them multi 

database system to specify the queries against the global schema which are 

called global queries [Aru 97]. 

 

1.2 Database System  
        The word database (DB) is in such common use that  must begin by 

defining a database: 

 

 

 

 



Chapter one                                                                                                       Overview                         
 

2 

           A database (DB) is a collection of interrelated data, stored together 

without harmful of unnecessary redundancy to serve multiple application. The 

data is stored such as to be independent from the program which uses it. [Aru 

97] 

           A database represents some aspects of the real world, sometimes called 

miniworld. Changes to the miniworld are reflected in the database. 

        Recently a database system in a large organization consists of hardware, 

software, data, and people. The hardware configuration is comprised of one or 

more computers, disk drive, terminal, printer, and other physical devices. The 

software includes a Database Management System (DBMS) and application 

program which uses the DBMS to access and manipulates the database. The 

data, representing the recorded facts important to the organization, resides 

physically on disk but logically structured in a way to make its access easy and 

efficient. People, both database system users and applicationers, work together 

to define the characteristics and structure of the database system to create the 

application programs which will provide the information essential to the 

company's success[Gar 92]. 

         Database system eliminates problems with data redundancy on data 

control. Data is control via a data dictionary system which is itself controlled by 

a group of company employees known as Database Administrator (DBA), who 

has this control responsibility and  might consider him as part of the database 

system. All of these features database systems simplify the effort and reduce 

program maintenance.  

Let us now consider the advantages and the disadvantage of database system    

[Gar 92]:   

 

 

 

 

 



Chapter one                                                                                                       Overview                         
 

3 

 

1. The ability to operate in different data structures. 

2. Redundancy can be reduced. 

3. Independent of data from the medium on which it stored.   

4. High speed of retrieval and fast online use. 

5. Inconsistency can be avoided. 

6. Stored data can be shared. 

7. Standards can be enforced. 

8. Minimum costs, by minimizing the required total storage. 

9. Data integrity can be maintained. 

10. Security restrictions can be applied. 

11. Conflicting requirements can be balanced. 

While the disadvantages  

1. Database systems are complex difficult and time consuming to design  

2. Substantial hardware and software start-up costs 

3. Damage to database affects virtually all applications programs 

4. Initial training required for all programmers and users 

 

1.3 Distributed Database System 
        The availability of database and of computer network rises to a new field 

"Distributed database system” which is an integrated database built on top of 

computer network rather than on a single computers. The data which constitute 

the databases are stored at the different sites of computer networks, and the 

application programs which are run by the computers access data at different 

sites. Therefore, distributed database is a collection of data which belong 

logically to the same system but spread over the sites of a computer network 

[Ozs 06]. 

 

 

 



Chapter one                                                                                                       Overview                         
 

4 

  1.4 Types of Distributed Database Systems  
The term distributed database management system can describe various 

systems that differ from one another in many aspects. The main thing that all 

such systems have in common is the fact that data and software are distributed 

over multiple sites connected by some form of communication network. The 

first factor we consider is the degree of homogeneity of the DDBMS software. 

 If all servers (or individual local DBMSs) use identical software and all 

users (clients) use identical software the DDBMS is called homogenous 

otherwise it is called heterogeneous. Another factor related to the degree of 

homogeneity is the degree of local autonomy. If there is no provision for the 

local site to function as stand-alone  DBMS then the system has no local 

autonomy. On the other hand if direct access by local transactions to a server is 

permitted the system has some degree of local autonomy [Ozs 06]. 

 

1.5 Integration of DataBase 
In today’s enterprises information is typically distributed among multiple 

heterogeneous database management systems. The heterogeneity exists at three 

basic levels. The first is the platform level. Database system resides on different 

hardware, use different operation systems and communicate with other systems 

using different communications protocols. The second level of heterogeneity is 

the database management system level. Data is managed by a variety of 

database management systems based of different data models and languages 

(e.g. file systems, relational database systems, object-oriented database systems 

etc.). Finally the third level of heterogeneity is that of semantics. Since different 

databases have been designed independently semantic   conflicts are likely to be 

present. This includes schema conflicts and data conflicts. 

  

 



Chapter one                                                                                                       Overview                         
 

5 

Commercially available technology offers inadequate support both for 

integrated access to multiple databases and for integration multiple applications 

into a comprehensive framework. Some products offer dedicated gateways to 

other DBMSs with limited capabilities. Thus they require a complete change of 

the organizational structure of existing database to cope with heterogeneity [Ozs 

06].  

 
1.6 Literature Survey 
          

A number of works  relating to heterogeneity issues of data, different 

technologies used in the retrieval of distributed databases. 

        Some of the research papers, which have been reviewed in this 

 context, are as follow. 

Joachim Hammer, Dennis Mcleod,” An Approach to Resolving Semantic 

Heterogeneous in a Federation of Autonomous, Heterogeneous Database 

Systems”, [Joa 96]. 

            An approach to accommodating semantic heterogeneity in a federation 

of interoperable, autonomous, heterogeneous database is presented. A 

mechanism is described for identifying and resolving semantic heterogeneity 

while at the same time honoring the autonomy of the database components that 

participate in the federation. An approach serves as a basis for the sharing of 

related concepts through (partial) schema unification without the need for a 

global view of the data that is stored in the different components. The 

mechanism presented in this paper is can be seen in contrast with more 

traditional approach such as ” integrated database” or “distributed database”. 

 

Richard Hull, “Managing Semantic Heterogeneity in Databases”, [Ric 97]. 

 

         The paper discusses some of the key things regarding relational database 

but the reading tends to show that relational databases are good at handling 



Chapter one                                                                                                       Overview                         
 

6 

huge volume of data but they are not good when the data is distributed and also 

they do not have the tendency to understand the meaning of data. The paper also 

discusses different architectures for database interoperations, which are of very 

importance 

 in managing Semantic Heterogeneity in databases. The paper tends to create a 

theoretical perspective in the heterogeneity issue but does not discuss in detail 

about how actually data can be integrated in a distributed environment and does 

not also refer to the technologies, used in this area. 

  

Andrei Lopatenko UM, Anne Asserson, UiB, Keith G Jeffery 

CLRC,”Information Retrieval of Research Information in a Distributed 

Heterogeneous Environment”, [And 01]. 

       User demands to have access to complete and actual information about 

research may require integration of data from different CRISs. CRISs are rarely 

homogenous systems and problems of CRISs integration must be addressed 

from 

technological point of view. Implementation of CRIS providing access to 

heterogeneous data distributed among a number of CRISs is described. A few 

technologies – distributed databases, web services, and semantic web are used 

for distributed CRIS to address different user requirements. Distributed 

databases serve to implement very efficient integration of homogenous systems, 

web services - to provide open access to research information, semantic web – 

to solve problems of integration semantically and structurally heterogeneous 

data sources and provide intelligent data retrieval interfaces. The problems of 

data completeness in distributed systems are addressed and CRIS-adequate 

solution for data completeness is suggested. 

 

Norio Katayama, Masanori Sugimoto, and Jun Adachi, “A Universal Query 

Interface for Heterogeneous Distributed Digital Libraries”, [Nor 02]. 



Chapter one                                                                                                       Overview                         
 

7 

          Various kinds of digital libraries are accessible on the WWW (World 

Wide Web). The interoperability among those systems is one of the major 

topics of the digital library community. This paper presents a Hy-NeSS model 

and its query  

interface for that purpose. The HyNeSS model integrates the entity relationship 

model and the predicate logic, and provides a universal and formal expression 

for network-oriented data. It has developed a prototype system of the HyNeSS 

database system. The query interface is universal in the sense that it does not 

depend on any particular database schema. It loads the schema information from 

a remote HyNeSS database system and adapts itself to the given schema. On the 

submission of a query, the composed expression is converted into a declarative 

query expression based on the predicate logic. It provides a universal expression 

to retrieve and identify objects in heterogeneous distributed environment. 

 

Tapio Niemi, Marko Niinim¨aki, Vesa Sivunen, “Integrating Distributed 

Heterogeneous Databases and Distributed Grid Computing”, [Tap 03]. 

       The aim of this paper is to present a middleware that combines the 

flexibility of distributed heterogeneous databases with the performance of local 

data access. The middleware will support both XML and relational database 

paradigms and applies Grid security techniques. The computing and database 

access facilities are implemented using Grid and Java technologies. 

        In this system, data can be accessed in the same way independently of its 

location, storage system, and even storage format. The system will also support 

distributed queries and transaction management over heterogeneous databases. 

This system can be utilized in many applications related to storing, retrieval, 

and analysis of information. Because of the advanced security components, e-

commerce is a potentical application area, too. 

 
Khurram Allah Ditta,”Integrating Information from Heterogeneous 

Distributed Databases”,  [Khu 04]. 



Chapter one                                                                                                       Overview                         
 

8 

        Heterogeneity issues regarding databases are one of the much 

acknowledged research areas in recent years. This is because of the growing 

interest of developers and researchers in the semantic web. 

       The optimum solution would be to find a technique, which would not only 

provide data integration among semantically heterogeneous sources but would 

be designed in such a manner that it could be applied to different applications. 

Although there are not many applications, which are designed to provide such 

functionality, still there has been extensive research in this area. 

        The project has proposed a design to manage semantic the heterogeneity 

and data integration. 
 

Xuequn. Wu , Schmelzer R. “A CORBA-Based Architecture for Integrating 

Distributed and Heterogeneous Databases”,[Xue 04]. 

         This research discusses one of the key technologies namely CORBA used 

in distributed computing. The paper gives a lot of technical details about how 

heterogeneous information sources can be integrated but since the researcher 

does not know much about CORBA so it is not easy to understand the 

technology properly, hence it’s convenient to stick to XML based solution to 

the project.          

   Some of the other technologies, which have been reviewed as a part of project 

him research, such as RDF. Resource Description Framework (RDF) is a 

framework for representing information in the Web. It is a simple data model 

which is based on XML syntax. RDF provides a unique way to interconnect 

applications, these application cab be databases and can also be used to combine 

data from several applications to arrive at new information. Like HTML is said 

to be simple and can be displayed anywhere, for RDF it can be said that it could 

be understood everywhere. 

   

 

 



Chapter one                                                                                                       Overview                         
 

9 

1.7 The Aim of thesis 
 
       The aim of this thesis is to construct integrated multi-DataBase information 

system by merge and manage three heterogeneous databases sources 

(Access,Foxpro,SQl). Besides looking into the issue of this project which aims 

at:  

1. Developing and understanding of the how to query heterogeneous data  

 sources implemented in a distributed environment.  

2. Studying the issues of data synchronization among the distributed 

databases. 

3. Investigating issues regarding the schema integration of heterogeneous 

sources. 



Chapter two                      Distributed database and Client server Architecture 

10 

 

Chapter Two 

Distributed Database System  

And  

Client Server Architecture 
2.1 Introduction 
          Distributed databases are important for economical, organization and 

technological reasons. They can implement in large geographical computer 

networks and in small local network. Distributed database systems eliminate 

many of the shortcomings of centralized database and fit more naturally in the 

decentralized structure of many organizations.    

          The amount of information stored in different databases is increasing 

rapidly all the time. Many of these databases are accessed from the Internet or 

intranets. Even the whole Internet can be seen as a huge distributed 

heterogeneous database and it is often used as such even by ordinary end users.  

           Thus, the principle motivating factors for implementing distributed 

database systems include increased reliability; improve response performance, 

location and replication independences, integration of heterogeneous DBMSs, 

and organizational congruence.  

 

2.2 Distributed Database Management System (DDBMS) 
          A distributed database management system (DDBMS) is a software 

system that permits the management of the distributed database and makes the 

distribution transparent to the users. Distribution Transparency means that, the 

independence of the application program from the distribution of data, and has 



Chapter two                      Distributed database and Client server Architecture 

11 

been considered to be conceptually equivalent to data independences in 

centralized DB. DDBMS supports the creation and maintenance of DDBs. 

The software components which are typically necessary for building a DDB in 

this case are [Ste 85]: 

1. The Database Management Component (DB). 

2. The Data Communication component (DC). 

3. The Data Dictionary (DD), which is extended to represent information about 

the distribution of data in the network. 

4. The Distributed Database Component (DDB). 

5. the End user, i.e. terminals (T). 

       These components are connected as shown in Figure (2.1) for two–site 

network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DDB

DC

DD

DB

 

DDB
DC

DD

DB

Local 
DB 1 

Local 
DB 2 

Site 1

Site 2

T T T T T

T T T T T

Figure (2.1): Components of DDBMS[Ste 85] 



Chapter two                      Distributed database and Client server Architecture 

12 

2.2.2 Functions of DDBMS 

          It expected that DDBMS has at least the functionality of a DDBMS. It 

also has following functionality [Ami 04]: 

1- Extended Communication Services. 

2- Extended Data Dictionary. 

3- Distributed Query Processing. 

4- Extended Concurrency Control. 

5- Extended Recovery Services. 

 

2.2.3 DDBMS Implementation Alternatives  
        Basically, there are dimensions for database, DDBMSs and application. 

Figure (2.2) shows the alternatives in implementing DDBMSs [Zho 01]: 

1. Distribution: means that database, DDBMSs and applications can be 

located centrally on the same machine or distributed in a network. 

2. Autonomy: means that the control of database, DDBMSs and application 

can be done centrally, autonomous, or in between., its may be on Various 

versions: 

a.  Design autonomy: Ability of a component DBMS to decide on 

issues related to its own design. 

b.  Communication autonomy: Ability of a component DBMS to 

decide whether and how to communicate with other DBMSs. 

c.  Execution autonomy: Ability of a component DBMS to execute 

local operations in any manner it wants to. 

3. Heterogeneity: means that database, DDBMs and application can be of 

the same type or of different types.  

 



Chapter two                      Distributed database and Client server Architecture 

13 

 

 

Figure (2.2): DDBMS Implementation alternatives 

 

 

2.3 Classification of Database Managements Systems  
      Several criteria are normally used to classify DBMDSs. The first is the data 

model on which the DBMS is based [Ozs 06]. The main data model used in 

many current commercial DBMSs is the relational data model. The object data 

model was implemented is some commercial systems but has not had 

widespread use. Many legacy (order) applications still run on database systems 

based on the hierarchical 

and network data models .The relational DBMSs are evolving continuously and 

in particular have been incorporating many of the concepts that were developed 

object databases. This has led to a new class of DBMSs called object –relational 

DBMSs. Can hence categorize DBMSs based on the data model: relational 

object relational hierarchical network and other. The second criterion used to 

classify DBMSs is the number of users supported by the system. Single –user 

systems support only one user at a time and are mostly used with personal 



Chapter two                      Distributed database and Client server Architecture 

14 

computers. Multiuser systems which include the majority of DBMSs support 

multiple users concurrently. A third criterion is the number of sites over which 

the database is distributed. A DBMS is centralized if the data is stored at a 

single computer site. A centralized DBMS can support multiple users but the 

DBMS and the database themselves reside totally at a single computer site. A 

distributed DBMS (DDBMS) can have the actual database and DBMS software 

distributed over many sites connected by a computer network. Homogenous 

DDBMSs use the same DBMS software at multiple sites. A recent trend is to 

develop software to access several autonomous preexisting databases stored 

under heterogeneous DBMSs. This leads to a federated DBMS (or multi 

database system) in which the participating DBMSs are loosely coupled and 

have a degree of local autonomy. Many DDBMSs use a client –Server 

architecture. 

 

2.4 Paradigms for Data Distribution 
     The important paradigms of data distribution are:- 

1. Client-server architecture: separation of the database server from the 

client 

2. Distributed databases: several database servers used by the same 

application 

3. Parallel databases: several data storage devices and processors operate in 

parallel for increasing performances 

4. Multi databases: is the software that provides for the management of 

collection of autonomous sites and access to them   

5. Data warehouses: servers specialized for the management of data 

dedicated  

 

 

 



Chapter two                      Distributed database and Client server Architecture 

15 

 

2.5 Distributed Database System (DDBS)  
         The distribution of the data is transparent to the users who can access the 

data as if they were located at one site. In reality, to access data distributed in 

different computer sites, the transmission of data over communication links is 

needed. Since communication delay is substantial, an efficient query processing 

mechanism has to be designed [Sey 98] .  

         There are two equally important aspects of the distributed database: 

A. Distribution: The fact that the data are not resident at the same site 

(processor). 

B. Logical Correlation: The fact that the data have some properties which tie 

them together, so that we can distinguish a distributed database from a set 

of local databases or files which are resident at difference sites of a 

computer network. 

There exist two types of application that are used by distributed database. These 

are: 

A. Global Application (or Distributed Application): That accesses data at the 

discriminating characteristics of distributed database with respect to a set 

of local database. 

B. Local Application: Those which can access data resident at the same 

site or computer that this application is working in [Ste 85]. 

     With these two types of application,  can give a complete definition of the 

distributed database systems (DDBS) which is a collection of data which are 

distributed over different computers of a computers network. Each site of the 

network has autonomous processing capability and can perform local 

applications. Each site also participates in the execution of at least one global 

application, which requires accessing data at several sites using a 

communication subsystem. As shown in Figure (2.3). The key here is 



Chapter two                      Distributed database and Client server Architecture 

16 

Te
rm

in
al

s  

Te
rm

in
al

s  

Te
rm

in
al

s  

integration, not centralization because the distributed database system attempt to 

achieve integration without centralization. 

        The sites in the distributed system communicate through different types of 

communication links, such as telephone lines, coaxial cables, or satellite links. 

Computer networks are usually classified as Local Area Network (LAN) or 

Wide Area Network (WAN) depending upon the distance between the sites. 

Usually WAN links are telephone lines, satellite channels, or microwave links 

[Rob 88].  

       The proximity (less than a mile) of workstations or same building in a LAN 

makes it possible to use coaxial cable and fiber optic links, in addition to 

twisted wire pairs. Typical LAN link are higher speed and subject to lower error 

rates than WAN links. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.3): Distributed Database System [Rob 88] 
          

DB2

Computer   
2 

Computer 
3 DB3 

Communication 
Network

DB1 

Computer 
1 



Chapter two                      Distributed database and Client server Architecture 

17 

 
2.5.1 The Advantages and Disadvantages of DDBS Usage  
        Distributed database systems can be complex, but they offer capabilities 

that extend the advantages of database technology. 

I. Advantages of DDBS 

         A list of the main advantages of DDBS can be presented of the following:     

         [Ram 00],[Nin 03]and[Ste 85]. 

 

1. Organizational and Economic Reasons 

       Many organizations and enterprises are decentralized, because it’s often 

have branches or division in different locations and distributed approach fits 

more naturally the structure of organization.  

 

2. Incremental Growth and Easier System Expansion 

          Distributed system can growth better no distributed systems. So that, if an 

organization grows by adding new node (new branch, new ware houses ,etc), 

then the DDB approach supports a smooth incremental growth with a minimum 

degree of impact on the already existing nodes, there is  no need to re-configure 

the whole database ,the new node almost automatically becomes part of the 

global database .    

However, expansion of the system is much easier, because of the ability to add a 

new site by data and users over time without major restructuring. 

 

3. Reduce Communication Overhead 

          Many application are local clearly reduces the communication overhead 

with respect to a centralized DB. Therefore, the maximization of locality of 

applications is one of the primary objectives in DDBS design. 

 

 



Chapter two                      Distributed database and Client server Architecture 

18 

4. Interconnection of Existing Database 

          DDBSs are the natural solution when several databases already exist in an 

organization and the necessity of performing global applications arises. In this 

case, the DB is created Bottom-up from the preexisting database. 

 

5. Improved Performance   

Since each site handles only a portion of a DB (Data Localization), the 

contention for CPU and I/O resources is reduced, and simultaneously reduces 

access delays involved in Wide –Area Network .When a large DB distributed 

over multiple sites, smaller DB exist at each site .As result, local queries and 

transactions accessing data a single site have better performance because of the 

smaller local DB. Moreover, the speed of query processing is another 

contributes to improved performance, it means that, if a query involves data at 

several sites, it may be possible to split the query into sub queries that can be 

executed in parallel. 

 

6. Data Sharing  

        The major advantages in building a DDBS is the prevision of an 

environment where users at one site may be able to access the data residing at 

other sites .For instance, in a distributed banking system, where each branch 

stores data related to that branch, it is possible for a user in one branch to access 

data in another branch. Without this capability a user wishing to transfer funds 

from one branch to another would have to resort to some external mechanism 

that would couple existing systems. 

 

 

 

 

 



Chapter two                      Distributed database and Client server Architecture 

19 

 

7. Increased Reliability and Availability  

         These are two of the most common potential advantages cited for DDBS. 

Reliability is broadly defined as the probability that the system is running (not 

down) at a certain time point, whereas availability is the probability that the 

system is continuously available during the time interval. DDB can upgrade 

reliability. If one site computer fails, or if a communication link goes down, the 

rest of the network can probably continue functioning .Moreover, when data is 

replicated as  

two or more sites; the required data may still be available from a site that is still 

operable. This facility is crucial for DDBS used for real time applications. 

 

8. Transparency of Distribution  

        Transparency refers to separation of the higher level sometimes of a system 

from lower level implementation details. It means that the user and user 

programs should not need to know where (at which site) any particular item of 

data is located. This advantage simplifies the logic of application programs, and 

it allows data to be moved from one site to another as usage patterns change 

without necessitating any reprogramming. 

 

9. Local Autonomy and Local Control  

          The possibility of local autonomy is often a major advantage of DDBS, it 

allows each site to store and mention its own database allows immediate and 

efficient access to data that is used most frequently. Such data may be used at 

other sites, as well, but usually with less frequency. Similarly, data stored at 

other locations are usually needed less often and can be accessed as required. 

  

 

 



Chapter two                      Distributed database and Client server Architecture 

20 

 

10. Security 

        The DDB allowing local control over the data used most frequently at a 

site can improve user satisfactions with the data system, since local databases 

can more nearly reflect an organizations administrative structure and thereby 

better service its manager’s needs. 

        In a centralized system, the DBA of control site controls the database. In 

DDBS, there is a global DBA responsible delegated to the local DBA for each 

site. 

 

11. Efficiency and Flexibility  

        Efficiency and flexibility are most basic concepts of the DDB. It makes the 

data very close to the user, in order to make the communication to data fast. If 

any user needs unavailable data in his site, the system will bring him the 

required data unconsistously. 

 

II. Disadvantages of DDBS  
        The primary disadvantage of DDBS is added complex required to ensure 

proper coordination among the sites. The main disadvantages of DDBS are as 

follows [Ste 85],[Sil 02],[Kam 01]: 

1.  Complexity of   Design and Implementation. 

          This approach is a complex task to build a DDB on top of computer 

network and a set of local DBMSs at each site; it would be an infeasible effort 

without these building blocks. Thus, DDBS problems are inherently more 

complex than those of the centralized DBMS. 

2. Software Development Cost     

        It is more difficult to implement a DDBS, thus, it is very costly (more: 

H/W, S/W, and people costs). 

 



Chapter two                      Distributed database and Client server Architecture 

21 

 

 

3. Greater Potential for Bugs 

         Since the sites that constitute the DDBS operate in parallel, it is harder to 

ensure the correctness of algorithm. The potential exists for extremely subtle 

bugs. 

4. Increased Processing Over Head  

         The exchange of message and the additional computation required to 

achieve inter site coordination are a form of overhead that does not arise in the 

centralized system. 

5. Difficult to Convert  

     No tools to convert centralized DBMSs to DDBSs. 

         There are additional disadvantages of DDBS, for example when replicated 

data is mentioned at several sites, which require extra resources, and 

synchronization, and coordination to ensure that concurrent updates are 

consistent, and transaction processing and recovery become more difficult, that 

make data available to users throughout a network makes security inherently 

more complex for a DDB than with centralized counterpart. 

         Although these limitations suggest caution in planning and implementing 

DDBSs, the technology for mitigating such limitations is rapidly improving. In 

order for firms to be responsive, productive, and competitive, DDBSs will 

increasingly be selected as the central component of an effective information 

system strategy. 

 

2.6 Distributed Database System Architecture  
         Architecturally, a distributed database system consists of a (possibly 

empty) set of query sites and a non-empty set of data sites. The data sites have 

data storage capability while the query sites do not. The latter only run the user 



Chapter two                      Distributed database and Client server Architecture 

22 

interface (in addition to applications) in order to facilitate data access at data 

sites. 

         There are two points of view for the DDBMS architecture: The level of 

distribution transparency and the alternative of Client/Server models, as 

highlighted in the subsequent sections [Ozs 06].  

 

2.6.1 Level of Distribution Transparency  
     The reference architecture for a DDBS is defined to represent different 

level of distributed transparency. Figure (2.4) shows the reference architecture 

for a DDB [ste 85]. 

         In this architecture, we can see several levels or schemas, these are: 

 

II. Global Schema  
          At the top level of this architecture, there is the global schema. It is 

defines all data which are contained in the DDB as if the DB were not 

distributed at all. For this reason, the global schema can be define exactly 

in the same way as in a non distributed DB .However, the data module used 

for the definition of global schema should be convenient for the definition 

of the mapping to the other levels of the DDB. 

       Thus, using relational module will generate a set of global relations, 

each one can be split into several non overlapping portion called fragments. 

 

II. Fragmentation Schema  
         defines the mapping between relations and fragments .This mapping is one 

to many such that several fragments correspond to one global relation ,but only 

global relation correspond to one fragment .Fragments are logical portions of 

global relations, which are physically located at one or several sites of the 

network. 



Chapter two                      Distributed database and Client server Architecture 

23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. Allocation Schema   
         Defines at which site (sites) a fragment is located .All the fragments which 

correspond to that same global relation are located at the same site. Constitute 

the physical image of the global relation. 

IV. Local Mapping Schema  
          At a lower level of this architecture is local mapping schema which 

defines the map between the physical images and the object which are 

manipulated by the DBMSs. This mapping depends on the type of local DBMS. 

Global Schema 

Fragmentation 
Schema 

Allocation Schema 

Local 
Mapping 
Schema 2 

Local 
Mapping 
Schema 1 

DBMS 
of 

site 1 

DBMS 
of 

site 2 

Local 
Database 
at site 1 

Local 
Database 
at site 2 

Site  
Independent 
Schemas 

(Other sites) 

Figure (2.4): Reference Architecture for Distributed Databases. 

Local 
Mapping 
Schema n

 DBMS 
Of 

Site n

Local 
Database 
at site n 



Chapter two                      Distributed database and Client server Architecture 

24 

     There are three important objectives which motivate the feature of the 

architecture of DDB, these are:  

1-Sperating the Concept of Data Allocation. This separation allow us to 

distinguish two different levels of distribution transparency, these are 

“Fragmentation Transparency” and” Location Transparency”, fragmentation 

transparency is the highest degree of transparency and means that the user or 

application programmer works on global relation. While, location transparency 

is a lower degree of transparency and means that the user or application 

programmer works on fragments instead of global relations, however, he or she 

does not know where the fragments are located. 

2-Exiplicit Control of Redundancy. The reference architecture explicit control 

of redundancy at the fragment level. 

3-Independence from Local DBMSs. Allows us to study several problems 

without having into consideration the data model local DBMSs. This feature 

may be called local mapping transparency. 

 

2.6.2 The Alternative of Client/Server Models 

          There are a number of different architectural models for the development 

of a distributed DBMS, ranging from client/server systems [Orf 96]; where, 

Client-server is a general model of interaction between software processes, 

where interacting processes are sub-divided among clients (which require 

services) and servers (which offer services), that means, the query sites 

correspond to clients while the data sites correspond to servers, to a peer-to-peer 

system where no distinction is made among the client machines and the server 

machines.       

          These architectures differ with respect to the location where each DBMS 

function is provided. In the case of client/server DBMSs, the server does most 

of the data management work. This means that all of the query processing and 

optimization, transaction management and storage management are done at the 



Chapter two                      Distributed database and Client server Architecture 

25 

server. The client, in addition to the application and the user interface, has a 

DBMS client module that is responsible for managing the data that is cached to 

the client and (sometimes) managing the transaction locks that may have been 

cached as well. Figure (2.5) shows a typical client/server functional distribution.    

         Normally, a client process requests few services in sequence from one or 

more server processes, while a process server responds to multiple requests 

from many process clients [Pao 99]. 

 

Figure (2.5): Client - Server Model 
 

          The simplest client/server architecture is a multiple-client/single-server 

system. From a data management perspective, this is not much different from 

centralized databases since database is stored on only one machine (the Server) 

which also hosts the software to manage it. However, there are some important 

differences from centralized systems in the way transactions are executed and 

caches are managed. More sophisticated client/server architecture is one where 

there are multiple serves in the system (the so-called multiple-client/multiple-



Chapter two                      Distributed database and Client server Architecture 

26 

server approach). In this case, two alternative management strategies are 

possible:  

either each DBMS client manages its own connection to the appropriate server 

or each client knows only its home server which then communicates with other 

servers as required. The former approach simplifies server code, but a load the 

client machines with additional responsibilities (heavy client) while the latter 

approach concentrates data management functionality at the servers and 

provides transparency of data access at the server interface. A typical 

client/server architecture is given in Figure (2.6) [Ozs 06]. 

 

 

 

 

 

 

 

 

 

 

 

 

2.6.3 Client /Server Architectures  

 

 
     First discuss client /server architecture in general then see how it is applied 

to DBMSs. The client /server architecture was developed to deal with 

computing environments in which a large number of PCs workstations file 

server printer database derivers Web servers and other equipment are connected 

Figure (2.6): Client - Server Architecture 

Server Machine

Server 
process 

Operating system

Communication 
facility 

Virtual 
Communication

Physical 
CommunicationResponse message 

Request message
Network 

Client Machine 

Client 
process 

Operating system 

Communication 
facility 

Request 

Response 



Chapter two                      Distributed database and Client server Architecture 

27 

via a network. The idea is to define specialized servers with specific 

functionalities. For example it is possible to connect a number of PCs or small 

workstations as clients for a file server that maintains the files other client 

machines. Another machine could be designated as a printer server by being 

connected to various printers thereafter all print requests by the clients are 

forwarded to this machine. Web servers or E-mail servers also fall into the 

specialized server category. In this way the resources provided by specialized 

servers can be accessed by many client machines. The client machines provide 

the user with the appropriate interfaces to utilize these servers as well as with 

local processing power to run local applications. This concept can be carried 

over to software with specialized software-such as a DBMS or a CAD 

(Computer –Aided Design) package –being stored on specific server machines 

and being made accessible to multiple clients [Ozs 06]. 

Figure (2.7) illustrates client /server architecture at the logical level  

 

 

 

 

 

 

Figure (2.7): logical two –tier client /server architecture 

 

 

II. Advantages and disadvantage of Client-Server Architectures  
       In data management, allocation of client and server processes to distinct 
computers is now widespread, because [Ham 80]: 
 

1. More efficient division of labor 

2. Horizontal and vertical scaling of resources 

3. Better price/performance on client machines 

Client Client Client 

DBMS server Print server File server 



Chapter two                      Distributed database and Client server Architecture 

28 

4. Ability to use familiar tools on client machines 

5. Client access to remote data (via standards) 

6. Full DBMS functionality provided to client workstations 

7. Overall better system price/performance 

8. The functions of client and server are well identified 

9. They give rise to a convenient separation of design and management 

activities 

10. SQL offers an ideal programming paradigm for the identification of the 

‘service interface’, which lists the services offered by the server 

While the disadvantages is 

a. Dependability - when the server goes down, operations cease  

      b. Lack of mature tools - it is a relatively new technology and needed tools 

are lacking  e.g.. Automated client software distribution  

      c. Lack of scalability - network operating systems (e.g.. Novell Netware,  

        Windows NT Server) are not very scalable.  

b. Higher than anticipated costs  

e. Can cause network congestion 

 

 

2.7 Distributed Database System Design 
         The designing of DDBS is very difficult, and the problem design is how 

the DDBMS software and the applications that run against it should be placed 

across the sites, In the general setting, making decision about the placement of 

data and programs across the sites of computer network as well as possibly 

designing the network itself. 



Chapter two                      Distributed database and Client server Architecture 

29 

          The two fundamental design issues are fragmentation (the separation of 

DB into portions called fragments), and allocation, the optimum distribution of 

fragments. 

The design of centralized database amounts to [Ste 85]: 

1- Designing the “conceptual schema”, which describes the integrated DB (i.e. 

all the data which are used by the database applications). 

2- Designing the “physical database”, this is mapping the conceptual schema to 

storage area and determining appropriate access methods. 

         In a DDB these two problems become the design of the global schema and 

the design of the local physical databases at each site, the techniques which can 

be applied to these problems are the same as in the centralized databases .The 

distribution of the DB adds to the above problems two new ones. 

3- Designing the Fragmentation, this determines how global relations are 

subdivided into horizontal, vertical or mixed fragments. 

4- Designing the Allocation of fragments, which determines how fragments are 

mapped to physical images, in this way, also the replication of fragments is 

determined. 

These two problems fully characterize the design of data distribution .Thus the 

design of DDBS can be a complex task, careful consideration must be given to 

the objective and strategies to be served by the design. 

 

2.7.1 Objective of DDBS Design 

         Some of the objectives that are common to most DDBS implementations 

are discussed in this section. 

1- Location Transparency: Location transparency enables a user to access data 

without knowing, or being concerned with the site at which the data resides. 

The location of the data  hidden from the user. 

2- Configuration Independence: Configuration independence enables the 

organization to add or replace hardware without changing the existing software 



Chapter two                      Distributed database and Client server Architecture 

30 

components of the DDBMS. Its result in a system that is expandable when its 

current hardware is saturated. 

3- Integration of Heterogeneous DBMSs: Its sometimes desirable to integrate 

DB maintained by different DBMSs are supplied by different computers .Often 

the DBMS are supplied by different vendors ,one approach to integrating these 

databases is to provide a single user interface that can be used to access the data 

maintained by the heterogeneous DBMSs . 

4- Processing Locality: Distribution of data to maximize processing locality 

corresponds to the simple principle of placing data as close as possible to the 

applications which use them. 

5- Availability and Reliability of DDB: A high degree of availability for 

applications is achieved by storing multiple copies of the same information ,the 

system must be able to switch to an alternative copy when the one that should 

be accessed under normal conditions is not available .Reliability is also 

achieved by storing multiple copies of same information ,since it is possible to 

recover from crashes or from the physical destruction (such as, fire, earthquake) 

of one of the copies by using the other ,still available copies . 

6- Workload Distribution: Workload distribution is done in order to take 

advantages of the different power or utilizations of computers at each site, and 

to maximize the degree of parallelism of execution of applications. 

7- Storage Cost and Availability: Database distribution should reflect the cost 

and availability of storage at the different sites. It is possible to have specialized 

sites in the network for data storage, or conversely to have sites which do not 

support mass storage at all.  

 

 

 

 



Chapter two                      Distributed database and Client server Architecture 

31 

2.7.2 Strategies of DDBS  
 I. Data Fragmentation   

         The decomposition of global relation into several fragments, each 

fragment is stored in distinct sites .However, if the relation R is fragmented, R 

is divided into a number of fragments R1, R2, R3…Rn. These fragments contain 

sufficient information to reconstruct the original relation R; this reconstruction 

can take place through the application of either the union operation or special 

type of join operation on the various fragments. To illustrate these ways clearly, 

consider we have the following relation. 

Deposit-schema= (Visa Card branch, account-id, Person- name, Account). 

The relation deposit (Deposit-Schema) is shown in Table (2.1). 
 

 

Table (2.1): Sample Deposit Relation 
 
 
 
 
 
 
 
 
 
 
 

 
 

The main advantages and disadvantages of data fragmentation are: 

1. Usage: Applications work with views rather than entire relation. 

2. Efficiency: Data is stored does to where it is most frequently used, and 

data that is not needed by local applications is not stored at that location. 

3. Parallelism: With fragments as unit of distribution transaction can be 

divided into several sub queries that operate on fragments. 

Visa Card 
Branch 

Account-id. Person-name Account 

Baghdad 305 Ahmed 500 
Baghdad 226 Ali 336 
Mousel 177 Ali 205 
Mousel 402 Rashid 10000 
Baghdad 155 Rashid 62 
Mousel 408 Rashid 1123 
Mousel 639 Majid 750 



Chapter two                      Distributed database and Client server Architecture 

32 

4. Security: Data not required by local application is not stored at that 

location and so not available to unauthorized users. 

 

The various types for data fragmentation, can be disscussed [Hen 91]: 

1. Horizontal Fragmentation 

           Horizontal fragmentation consists of partitioning  the tuples of a global 

relation R into subsets R1,R2,R3,…,Rn ,each tuple of R must belong to one of 

the fragments ,so that the original relation can be reconstructed if needed .It can 

be  defined  by  expressing each  fragment  as selection  operation on the global  

relation R ,that is ,a predicate Pi is used to construct fragment R, as following 

format                                    Ri = Q Pi(R)…..(2.1) 

 

          The reconstruction of the relation R can be obtained by taking the union 

of all fragments, that is  

R=R1 U R2 U R3 …U Rn or (R= Ui =1 to n Ri)…..(2.2) 

          To illustrate that if the banking system has only two branches: Baghdad 

and Mosul, then there are two different fragments, 

Deposit1 = Qbranch-name=”Baghdad” (Deposit)….(2.3) 

                        Deposit2 = Qbranch-name=”Mosul” (Deposit)….(2.4) 

These two fragments are shown in Table (2.2). 

Table (2.2): Horizontal fragmentations Tables 

 

 

 

 

 

 

 

Visa-Branch Account-id. Person-name Account 
Mousel 177 Ali 205 
Mousel 402 Rashid 10000 
Mousel 408 Rashid 1123 
Mousel 639 Majid 750 

Visa-Branch Account-id. person-name Account 
Baghdad 305 Ahmed 500 
Baghdad 226 Ali 336 
Baghdad 155 Rashid 62 



Chapter two                      Distributed database and Client server Architecture 

33 

         Fragment Deposit1 is stored in Baghdad site, and fragment Deposit2 is 

stored in Mosul site. 

 

II. Data Replication   

           Data replication occurs if the system maintains several identical copies of 

a relation, R, with each copy being stored at a different site [Hen 91]. 

The advantages of replication then, are that  

1. Improvement in the availability : when a copy is unavailable due to site 

failure , it should be possible to access another copy 

2. Improvement in the performance: applications can operate on local 

replicas instead of having to communicate with remote sites, thus, 

reduced data transfer, and queries on R may be processed by several sites 

in parallel (concurrently). 

But its disadvantages are: 

            The tread of is in the extra cost of the added storage and in the 

maintenance of mutual consistency among copies. The update of local copy 

imposes the added overhead of transmitting that update to all sites maintaining a 

copy of the data, thus it is increased complexity of concurrency control. 

 

III. Replication Transparency  

           Replication transparency means that the user is unaware of which copy 

of data is being used. The need for replication transparency occurs when more 

than one copy of the data exist, since one copy must be updated when changes 

are made. This process can be a burden on users. Therefore, a DDBMS should 

handle all such requirements, freeing the user to concentrate on information 

needs. 

 

 

 



Chapter two                      Distributed database and Client server Architecture 

34 

IV. Allocation 

        Allocation means that each fragment is stored at site with optimal 

distribution. There are four alternatives regarding the placement of data: 

a- Centralized: consists of a single database and DBMS stored at one site. 

With user distributed across the network. 

b- Fragmented: database partitioned into disjoined fragment, each fragment 

is assigned to one site. 

 

c- Full Replication: consists of maintaining complete copy of database at 

each site. 

d- Selective Replication: is a combination of fragmented, replication, and 

centralized [Ram 00], [Nin 03]. 

 

 2.8 Type of Distributed Database Systems  
          The increase in data volumes led to the categorization of DBs in two 

broad groups, homogeneous and Heterogeneous. The comparison is based on 

different levels in a distributed database:  The hardware, operating system, and 

the local DBMSs. However, an important distinction for  is at the level of local 

DBMSs, because differences at lower levels are managed by the communication 

software [Ozs 06].  

 

 

2.8.1 Homogeneous Distributed Database System (DDBMS)  
          Homogeneous DDBS refers to a DDBMS with the same DBMS at each 

site that means, every site runs the same type of DBMS. In homogeneous 

DBMS, all sites have identical software and hardware (same computer and 

software), and appears to the user a single system. 

 



Chapter two                      Distributed database and Client server Architecture 

35 

2.8.2 Heterogeneous Distributed Database System (HDDBS) 
         Heterogeneous (HDDBS) refers to different sites run different DMBS. 

That mean, different site may use different schema and software. Difference in 

schema is a major problem for query processing, and the difference in software 

is a major problem for transaction processing. However, in a heterogeneous 

distributed database the sites may not be aware of each other and may provide 

only limited facilities for cooperate in transaction processing. Therefore 

Heterogeneous DDBMSs add the problem of translating between the different 

data models of the different local DBMSs to the complexity of homogeneous 

DBMSs [Ozs 06]. 

 

2.9 Characteristics of a HDDBS  
          A DDBMS relies on several database managed by several systems 

running on several machines [Ber 89]. In most of the systems implemented up 

to now, all components are homogeneous, that is to say that all the functions are 

realized in the same way on all the sites of the DDB. As soon as one of the 

functions is assumed in the whole DDBMS by components of different types, 

can said the system is heterogeneous for this function. A new problem is now 

merging: how to build heterogeneous DDBMSs. A heterogeneous DDBMS uses 

instead at least two different DBMSs.  

        Thus, many components can be heterogeneous in DDBMS, which means, 

they are different in [Ber 89]:  

1. The hardware, computers. 

2. The operating system, on which the DBMS are running. 

3. The network that interconnect the different sites (the system can use 

several local networks connected on a WAN network).  

4. The DBMSs, and each function they ensure: Protection, synchronization, 

resources allocation, transaction management… etc. 



Chapter two                      Distributed database and Client server Architecture 

36 

5. The data model (relational, network, hierarchical) at the three levels: 

external, conceptual, and internal.  

6. Programming language, the data description languages (DDL) and the 

data manipulation languages (DML). 

7. Implementation may be implemented by different developers. 

 

2.10 The Aims of use Heterogeneous DDBS 

           Various heterogeneous systems can be imagined different computers 

with different operating systems running different DBMSs on identical 

computers, etc. 

In practice, a heterogeneous system will be useful, if it proposes the following 

aims and facilities: [Ozs 06] 

1. To allow the users to manipulate a database without having to worry about 

the distribution of data and the diversity of local systems. 

2. To provide the facility to the entire users to manipulate the distributed 

database like a unique database with different languages they use to 

practice. So, each language can be more adopted for each usage.  

3. To make possible the integration of an existing database in a DBMS 

without any reorganization of this new local database and without any 

modification in applications (Keeping data and Languages). 

4. HDDBS allows a uniform view on the combination of data maintained by 

different autonomous database systems. 

5. Capability of providing a view of the system which is transparent not only 

to data distribution, but also to heterogeneity of DBMSs, this is a very 

difficult goal. 

 

 

 

 



Chapter two                      Distributed database and Client server Architecture 

37 

2.11 Problems of Heterogeneous DDBS  
        In this section, summarize some of the problems of heterogeneous systems;  

[Ste 85]:  

2.11.1 Selection of a Common Model and Data Manipulation 

Language 
           The most convenient way for allowing the communication of  several 

heterogeneous DBMSs is by using a common data model and data 

manipulation language(DML); data representation and DML Primitive of each 

DBMS are mapped to equivalent , representations and primitive of common 

data model  and DML . One advantage of having a common data model is the 

possibility of using it to describe the global schema of it reference architecture. 

Thus, also in a heterogeneous environment view of the DB. Another relevant 

advantage is that 

mappings and translations need not be done between each pair of DBMSs. 

Wherever, the mappings and translations need to be done only between each 

DBMS and the common data model and DML, which requires a number of 

translators growing linearly with the number of DBMSs. 

          Thus the first and more general problem in the development of a 

heterogeneous system is to select a appropriate common data model and DML. 

The selected data model and DML should have the following properties:  

 

1- They should allow a simple translation from the data models and DML of 

the DBMSs constituting the heterogeneous system. 

2- They should be suited to represent data and processing of DDB 

conveniently, in particular, the data model should be capable of 

representing the global fragmentation, and allocation schemata, while the 

DML should process “set-oriented" primitives (i.e. the possibility of 



Chapter two                      Distributed database and Client server Architecture 

38 

representing layered schema architectures and set-oriented processing, 

such as the relational model, and algebra are good conditions). 

 

2.11.2 Translation to the Common Data Model and DML  
          The translation between different DBMSs is not pearlier to distributed 

systems, Translation problems arise whenever two DBMSs are interfaced with 

in the same system, or whenever the DBMS is changed and applications written 

for the old DBMS are interfaced with the new DBMS (similar problem can also 

arise when a new version of the DBMS is also introduced) [Ste 85].  

In a heterogeneous system on translation is required, distinguish global 

optimization, in which the distribution of the execution among sites determined 

from local optimization, in which each site determines the best method for 

evaluation its partition of execution. 

          In heterogeneous systems with a common global data model and DML, it 

appears responsible to perform global optimizations into the common DML. 

Thus 

instead of building several versions of it , which assumes as input the 

description of the application in the common DML , a disadvantage of this 

solution is that an application  must be translated also when it can be completely 

executed at its site of origin . 

            A different solution consists of the application to a local analyzer which 

is able to decompose it into local and remote portions. Only the remote portion 

is translated into the common DML .Thus if no remote site is involved in the 

application, no translation is required.  

A simpler resolution consists of limiting the sophistication of the analysis by 

classifying applications into two sets:  

          Completely local application (those which do not need any remote 

resources), and all other applications .The former should use the local DBMS 

directly , the later should be translated and them optimized .In the absence of 



Chapter two                      Distributed database and Client server Architecture 

39 

the analyzer ,the user should make this selection , and request the services of 

either the local DBMS or of the heterogeneous DDBMS.  

 

2.11.3 Integration of Different Schemata  
              Heterogeneous DDBMSs are typically built by aggregating systems, 

using a Bottom–Up approach. Thus, it is possible that the same facts are already 

described in the schemata of two different DBMSs , and it is possible that the 

two descriptions do not agree .Different in data definition of the same facts are 

called conflicts .  Considered the conflicts that can arise between two schemata 

which use the common data model. Conflicts are classified as follows: 

1- Name conflicts, which typically involve homonyms (Different facts 

decoted with the same name) and synonyms (different names used for the 

same facts).  

2- Structural conflicts, which arise when the same facts are described in two 

schemata using different elements of the data model. A typical structural 

conflict, with a common model including entities and attributes, consists 

of 

3- regarding the same fact as an autonomous entity in one schema and as the 

attribute of different entity in the other schema. 

          Performing the integration of two or more schemata requires   discovering 

and resolving the conflicts .In heterogeneous systems, solving conflicts by 

forcing one interpretation is not always request of possible, since typically data 

definitions of component DBMSs should not be altered. 

         Thus the integration process could leave the same conflicts unsolved but 

produce an auxiliary database, to be used during normal operation, typically for 

name conversions, and also mediating structural and abstraction conflicts. 

 

 

 



Chapter two                      Distributed database and Client server Architecture 

40 

 

2.11.4 Query Processing Problems  
           Most heterogeneous systems allow only distributed retrievals, while 

update applications must be done under the control each local DBMS, However, 

the heterogeneous DBs create additional (new query processing problems).  

        The distribution of a query should now take into account the difference in 

performance of the various sites. Some of the functions requested by an 

application either might be more expensive or might not be available at all 

remote DBMSs, and in this case it becomes necessary to transmit a superset of 

the data required by the application to the site of origin of the application, where 

those functions can be performed .Thus, query distribution should try to balance 

the amount of remote versus local processing very carefully. 

  

  2.12 Heterogeneous DDBS Architecture 
           Schema integration is a way of integrating the schemas of databases 

under consideration, or databases, which might be included in future. Schema 

integration has more relevance to the project as compared to the data warehouse 

concept. Schema integration results in a global schema, which is also sometimes 

regarded as the virtual view of the databases. 

         There is proposed architecture, proposed a four-layered architecture for 

schema integration but this architecture provides data integration from the 

structural point of view. The issues regarding the semantics of data were not 

resolved by the proposed architecture. The following Figure (2.8) shows the 

four layers architecture [Red 94]. 



Chapter two                      Distributed database and Client server Architecture 

41 

 
                      Figure (2.8): Four-Layered Architecture of HDDBS 
 
 
          A number of problems arise when different local schemas are put 

together. Because of the heterogeneous nature of the data models, each model 

tends to have different rules. Before the local schemas can be integrated, they 

need to be arranged in a uniform manner. Inconsistencies arising from issues 

like homonyms, synonyms, missing data and scaling conflicts, need to be 

handled at some intermediate level before actual integration can take place at 

the global level. This is done by defining the local schema objects; these objects 

are defined by the Database Administrators (DBA) who have the knowledge 

about the kind of information, which is required for integration. In above 

approach local schema 

objects do introduce inconsistencies with respect to human interpretation of the 

data. It is a fact that the same information might be regarded useful by one 

person and not to be useful by another person. 

          Thus, a HDDBS is defined as, comprises a software layer (integration 

layer) and multiple databases and/or file systems to be integrated. Users can 

transparently access the integrated databases and/or file systems via the 

interface provided by the integration layer. The integrated, local databases are 



Chapter two                      Distributed database and Client server Architecture 

42 

autonomous and can also be used as stand-alone systems. Local applications are 

unchanged and unknown to the HDDBS [Red 94]. 

There are important concepts in the Integration Layer: 

1. Global data model 

2. Global schema and meta data management 

3. Distributed query processing and optimization 

4. Distributed transaction management 

          The final representation of the architecture of Heterogeneous DDBS is 

shown in Figure (2.9) [Den 02]. 

 

Figure (2.9): Heterogeneous DDBS Architecture 

      

 

 

 

 



Chapter two                      Distributed database and Client server Architecture 

43 

 

2.13 Strategies of Distributed DataBase Design  
          There are two alternative approaches to the design of data distribution, 

these are [Ste 85]:  

 

2.13.1 Top-Down Approach 
            Top-Down approach is the most attractive for the systems which are 

designed from scratch, that means we start by designing the global schema and 

precede by designing the fragmentation of the database, and then by allocating 

the fragments to the site, creating the physical images. There is complete by 

performing, at each site, the physical design of data which are allocated to it. 

However, this approach is mostly used in homogeneous systems, as shown in 

Figure (2.10). 

  

 

2.13.2 Bottom-Up Approach  
           Bottom-Up Appoach approach is based on the integration of existing 

schema into single, global schema. BY integration; we mean the merging of 

common data definition and the resolution of conflicts among different 

representations given to the same data. When existing DBs are aggregated into a 

distributed DB, it is possible that they use different DBMSs.  

          However, this approach which is mostly used in the prototypes of 

heterogeneous system is that to select a common data model, and then to 

translate it into this unique representation all the different schema of involved 

DBMSs, as shown in Figure (2.11). 

However, the Bottom-Up design of a DDB requires: 

1- The selection of a common Db model for describing the global schema of 

the database. 



Chapter two                      Distributed database and Client server Architecture 

44 

2- The translation of each local schema into the common data model. 

3- The integration of the local schema into a common global schema. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.10): Top Down Approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

Global Schema 
 
 

Local schema 
 
 

Physical design 



Chapter two                      Distributed database and Client server Architecture 

45 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure (2.10) Bottom-up Design Approach 

Global Schema Design

Schema Integration 

Translator 
1 

Translator 
2 

Translator 
n 

Database 
1 

Database 
2 

Database 
n 



Chapter Three                                                           Multi‐Database Architectures 
 

46 

 
Chapter Three 

Multi-Database Architectures 
 
3.1 Introduction    
The Multi-database system is heterogeneous; that is, each has its own strategy 

for implementing concurrency, deadlock resolution, and recovery. Additionally, 

each local system may be based on a different data model. 

 The multi-database will based on one of the multi-database model a multi-

database management system (MDBMS) and the various layers that make up its 

query processing strategy. A critical component of the MDBMS is the global 

transaction manager.  

 

3.2 Multi-Database Systems   
    A multi database system (MDBS) is a service that provides access to data 

stored in multiple autonomous and possibly heterogeneous.  An MDBS 

integrates a set of autonomous and heterogeneous local DBSs[Ang95] 
. In turn each local DBS consists of a local DBMS and a database. Users can 

access information from multiple sources through global transactions. 

Operations belonging to global transactions are executed by local DBMSs. 

Besides global transactions there exist local transactions in a multi database 

environment. Local transactions result from the execution of local applications. 

Such applications are typically pre-existing with regard to the integration 

realized by MDBSs.  A computer system is subject o failures. Such failures may 

provoke loss of information. Hence MDBSs should be able to react in failure 

situations in order to restore the multi database to a consistent state without 

human intervention that is automatically. However ensuring reliability in 

MDBSs is a very complex task. First of all more types of 



Chapter Three                                                           Multi‐Database Architectures 
 

47 

failures may occur in MDBSs (e.g. a communication failure which can isolate a 

local DBS from the MDBS) than in centralized DBMSs. Second in MDBSs 

there is a tradeoff between preserving local autonomy and providing an efficient 

global recovery mechanism.  

     Two classes of transactions are supported in a multi database environment  

1. Local transactions which are transactions executed by an LDBMS outside 

the control of the MDBS. 

2. Global transactions which comprise transactions submitted by the MDBS 

to LDBMSs. Global transactions may be executed in more than one local 

system. Thus define a global transaction Gi as a set of subsequences 

{SUBi,1,  SUBi,2, SUBi,3, ….. SUBi,m} where each SUBi,k is executed at the 

local system LDBSk as an ordinary local transaction. 

      To client applications multi database systems provide an integrated view of 

the data stored at component database systems under their control. The 

abstraction gives applications the illusion that they are accessing a single 

databases system. This removes the complexity of distribution heterogeneity, 

integration, transaction, management and administration from the application to 

the multi database system. A centralized view of a single multi database server 

defeats the transparency aspect of the multi database abstraction. With a single 

centralized server, applications are exposed to the nuances of accessing data 

sources that cross multi database domains.  

    Better known as heterogeneous multi-database systems, this type of global 

DBMS is characterized by dissimilar data models, concurrency and 

optimization strategies, and access methods. The homogeneous distributed 

database, the data models that compose the global database could be based on 

the relational, hierarchical, or network model.   

    Access methods and concurrency control algorithms would utilize locking 

mechanisms at one site and time stamp strategies at another site. Unlike 

homogeneous distributed database systems, multi-database systems are 



Chapter Three                                                           Multi‐Database Architectures 
 

48 

heterogeneous; that is, their components and data models are dissimilar. Figure 

(3.1) shows an example of a multi-database architecture. 

 

 

Figure (3.1): Multi-database architecture [Ang 95] 

 

    It is composed of a central global location and two distributed sites. The 

central global access site contains the global access layer and the global data 

dictionary. Another name for the global data dictionary is the global database 

schema. The local sites each contain a local access layer, a local database 

management system, and a database. The local access layers, together with the 

global access layer, make up the multi-database system. 

     The local components are based on two different database management 

systems and data models. The global data dictionary contains information that 



Chapter Three                                                           Multi‐Database Architectures 
 

49 

makes these two databases appear to the user as if they were one large database. 

When a user submits a distributed query to the global access layer, the query is 

decomposed and transformed to the appropriate data retrieval language for each 

site. To the user, it appears that the entire distributed database is based on the 

relational model (assuming the global data dictionary is based on the relational 

model).  

 

3.3 Database Schemas 
     Figure (3.2) shows a simple relational database containing three relational 

tables.  This model requires no pointers or special records to implement the 

relationships among the tables. These relationships are defined by primary key 

to primary or foreign key links. These links are called joins and are defined 

during table creation by specifying which columns act as primary and foreign 

keys. Table 1 linked to table 2 over the common column C1 in each table. Table 

2 is linked to table 3 via the foreign key C2 belonging to each table; that is, 

column C1 is the primary key of table T1, and column C2 is a foreign key in 

tables T2 and T3. Atypical query joining these three tables. 

 

 

 

 

 

 

 

 

 

 
Figure (3.2): A Relational Database 

 



Chapter Three                                                           Multi‐Database Architectures 
 

50 

3.3.1 The Hierarchical Model 
Figure (3.3) shows a database based on the hierarchical data model. This 

database contains four files and implements the following relationships via 

special pointers embedded in the files’ records: 

File 1 is parent to file 2 and file 3. File 2 is parent to file 4. Notice that a child 

entity can have only one parent. A child entity can also be a parent to another 

child entity. Relationships are defined by including pointers between related 

records of different files. 

 

 

 

 

 

 

Figure (3.3): A hierarchical Data Model 

 

3.3.2 The Network Model 
Figure (3.4) is a block diagram of a database based on the CODASYL model. 

Relationships among network database files are implemented via special data 

objects called DBTG (database task group) sets. These records contain pointers 

that link related records in files, permitting one-way or two-way navigation. An 

application program reads these DBTG sets and navigates through the links. 

Unlike the hierarchical model, a child can have more than one parent, thereby 

increasing the modeling power by allowing designers to define complex 

relationships among files. 

 

 

 



Chapter Three                                                           Multi‐Database Architectures 
 

51 

 

 

 

 

 

 

 

Figure (3.4): The network (CODASYL) model 

 

 

3.4 Multi-DataBase Managemet Architectures  
    The central architecture is composed of a central global control layer situated 

at a dedicated control site [Ang 95]. Its main functions are to accept global user 

queries, fragment them according to the sites where the data reside, dispatch the 

query fragments, and coordinate all activities among sites involved in the query 

so as to generate a final result for the user. At each local MDBMS site there is a 

local layer that interacts with the global layer to process each query fragment 

that was routed to each site involved in the global query. Each site contains one 

or more local DBMS; it is the function of the local MDBMS to further 

decompose the global query fragments into sub fragments, perform any required 

translation from the global query language to the local query language, and 

route the translated fragment to the appropriate local DBMS.  

Figure (3.5) shows Multi Database Architectures. The fragment component 

accepts queries submitted by the global user. It consults a directory for location 

information and fragments the query into global fragments to be routed to the 

sites where the desired data are located. The global query fragments are passed 

to an optimizer/router layer so that an execution strategy can be generated. This 



Chapter Three                                                           Multi‐Database Architectures 
 

52 

execution strategy contains information as to how intermediate result sets are to 

be generated, joined, and routed to sites that will perform the distributed joins. 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.5): Multi-database Architectures[Ang 95] 

 

 

 

3.5 Multi-Database Design Issues 
    The issues and methodology that must be familiar in order to implement a 

multi-database system. The design protocol is “bottom-up.”  

    A set of database schemas; possibly the data models are heterogeneous. Must 

somehow integrate them to generate a global schema that contains all the 

mappings, translations, and locality information for the components of each 

local database [Ang 95].  

 

3.6 Simplified Design Steps 
Figure 3.6 illustrates the principal steps together with the subtasks that make up 

the simplified design methodology. The first two steps, schema translation and 



Chapter Three                                                           Multi‐Database Architectures 
 

53 

schema integration, the third step generation, involve the creation of the 

templates for each relation that is a member of the global schema.  Analyze the 

subtasks for each step. The schema translation step is where each of the local 

data models is translated to a common data model to facilitate the integration 

procedure. Usually, the following translation occurs: 

1. Hierarchical-to-entity relationship 

2. Network-to-entity relationship 

3. Relational-to-entity relationship 

This translation step has the following subtasks: 

1. Select the global schema model. 

2. Select the schema integration method. 

 

 

 
 

Figure (3.6): Informal intuitive design steps [Ang 95] 



Chapter Three                                                           Multi‐Database Architectures 
 

54 

    

    Select the data model that will be used to implement the global schema. 

Examine the various schema integration techniques. Select the relational model 

for the global schema because of its current popularity and versatility. 

Integration, involves the application of a set of techniques that integrate the 

local schemas into one large, common schema that contains the attributes and 

characteristics of all the local schemas. As the integration process progresses, 

the following must be performed:[Ang 95] 

1. Intermediate model selection. This is when selects a data model that can 

be used to integrate all the local schemas. Translate the local schemas to 

the entity-relationship model, and retain that model as the intermediate 

global schema representation. 

2. Key and relationship identification. As the design process progresses, the 

primary and foreign keys in each table are identified. The relationships 

between the tables are also identified. This will facilitate the selection of 

primary and foreign keys when the final global schema is created. 

3. Identification of naming and semantic conflicts. In this phase the designer 

must isolate the data objects that have either different names but refer to 

the same object domain or objects with identical names that refer to 

completely different domains. Additionally, the designer must isolate 

objects that are semantically different.  

4. Identifying structural conflicts. During this phase of the design process; 

the designer must isolate objects that are represented differently from one 

schema to the other. The intermediate schema is generated after all the 

information and documented. The designer then proceeds to implement 

the global schema by defining the relation definitions that will be used to 

create each relation in the global schema.   

 

 



Chapter Three                                                           Multi‐Database Architectures 
 

55 

3.6.1 Schema Translation 
   Usually, database schemas are derived from an entity-relationship diagram. 

This step requires to perform the inverse of this traditional method. Given a 

database schema,  must 

1. Identify the target model.  

2. Identify the keys. 

3. Derive the relationship from the keys.  

For this step  must seek the assistance of the local administrator to find out the 

semantics of each relationship .  

 

3.6.2 Schema Integration 
   To integrate local schemas to generate a global intermediate schema that will 

be located at the global control site of the global layer of a multi-database 

system.  

 Must have following anomalies: 

1. Attribute or relation naming conflicts 

2. Semantic conflicts 

3. Structural conflicts 

4. Relationship conflicts (i.e., many-to-one relationships in a local database 

schema represented as one to many in another local schema) In addition, 

identify the key combinations used to implement the relationships among the 

entities. 

 

3.7  Integration Techniques 
   Now that the local schemas have been generated, must merge them to create 

one intermediate schema that will be used to create the global schema. The three 

methods that will discuss with the references to the researchers that discussed or 

authored the methods: 

1. Pure Binary Schema Integration. 



Chapter Three                                                           Multi‐Database Architectures 
 

56 

2. Ladder Binary Schema Integration. 

3. Nary Integration Techniques. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.7): Pure Binary schema Integration 

 
Figure (3.7 )shows the pure binary schema integration technique. At the bottom 

of the figure, we see four local schemas. The schema at site 1 is integrated with 

the schema at site 2 to generate the intermediate schema 1. The schema at site 3 

is integrated with the schema at site 4 to generate the intermediate schema 2. 

Finally, the two intermediate schemas are integrated to create the final 

globalschema. This technique has the benefit of simplicity. The designer can 

choose to select the two simplest schemas, integrate them, and then select the 

next two simplest schemas, integrate them, and so on until the final global 

schema is generated. By simplest, the two schemas that have the fewest naming, 

semantic, and structural conflicts.  

     Also wish to integrate schemas that are almost identical in appearance as to 

attribute count, type, and domain. Figure (3.8) is a block diagram depicting the 

binary ladder schema integration method. This method is similar to the pure 



Chapter Three                                                           Multi‐Database Architectures 
 

57 

binary technique in that two schemas are integrated at a time. This retains the 

simplicity benefit. Figure (3.8) shows n local schemas that require integration. 

 The schema at site 1 is integrated with the schema at site 2 to generate the first 

intermediate schema. 

 
 
 

Figure (3.8): Ladder Binary Schema Integration 
 
 

  
 

Figure (3.9): Nary schema Integration 



Chapter Three                                                           Multi‐Database Architectures 
 

58 

 
  The first intermediate schema is integrated with the third local schema to 

generate intermediate schema 2. Each intermediate schema is then integrated 

with the next local schema in line until the last local schema is absorbed. The 

resulting intermediate schema represents the intermediate global schema that 

can be transformed to the selected target model for the global schema. Figure 

(3.9) is a block diagram for the Nary integration technique. This is a one-shot 

strategy. The information for all sites is collected and all the local schemas are 

integrated at one time. Although this is a faster technique, it is much more 

complicated to implement[Ang 95].  

 

3.8 Query processing in Multidatabase System  
   Many of the distributed query processing and optimization techniques carry 

over to Multidatabase systems but there are important differences [Ozs 06]. The 

characterized distributed query processing in four steps: query decomposition 

data localization global optimization and local optimization. This is a 

generalization of the local query processing steps in centralized DBMSs which 

include decomposition optimization and execution.  The nature of 

Multidatabase systems requires slightly different steps.  

The nature of the multi-DBMS is a layer of software that runs on top of 

component DBMSs. Each DBMS has its own query processors which execute 

queries. 

Query processing in a Multidatabase system is more complex than in a 

distributed DBMS for the following reasons  

1. The capability of component DBMSs may be different which prevents 

uniform treatment of queries across multiple DBMSs and sites. 

2. Similarly the cost of processing queries may be different on different 

DBMSs. This increases the complexity of the cost functions that need to 

be evaluated. 



Chapter Three                                                           Multi‐Database Architectures 
 

59 

3. There may be difficulties in moving data between DBMSs since they may 

differ in their ability to read moved data. 

4. The local optimization capability of each DBMS may be quite different. 

In addition the autonomy of these systems poses problems communication 

autonomy means that a component DBMS may terminate its services at any 

time. This requires query processing techniques that are tolerant to system 

unavailability. 

The question is how the system answer queries where the component system is 

either unavailable from the beginning or shuts down in the middle of query 

execution. There has not been much   work in this area. Design autonomy may 

restrict the availability and accuracy of statistical information that is needed for 

query optimization. The execution autonomy of Multidatabase systems makes it 

difficult to apply some the query optimization strategies. For example semi join 

–based optimization of distributed joins may be difficult if the source and target 

relation reside in different component DBMSs since in this case the semi join 

execution of a join translates into three queries: one to retrieve the join attribute 

values of the target relation and to ship it to the source relations DBMS the 

second       to perform the join at source relation and the third to perform the 

join at the target relations DBMS. The problem arises because communication 

with component DBMSs occurs at a high level of the DBMS. 

 

 

 

 

 

 

 

 

 



Chapter Three                                                           Multi‐Database Architectures 
 

60 

 

 

 
        System responses                   User requests      system responses           User requests 

 

   

   
 

 

 

 
       Site1 Site2 

Figure (3.10) Structure of a Distributed Multi-DBMS 

3.9 Query processing Layers in Distributed Multi DBMSs 
When a query is received at a site their first thing that needs to be done is 

to split it into subqueries based on data distribution across multiple sites. Rather 

than its stage across various databases. Therefore the only the only information 

that is required is the typical data allocation information stored in a global 

directory. The site that receives the query and performs the splitting called the 

control site is ultimately responsible for successful completion of the task. 

Each sub query is then sent to the site where it is to be processed. The multi 

DBMS layer at each site further fragments the query for each DBMS that it 

controls.  

    At this stage the information within the directory is used. Each subquery is 

then translated into the language of respective DBMS. Extensive information 

about the global query language and the individual languages used by the 

DBMSs needs to be maintained to facilitate translation. Even though this 

information can be kept within the directory it is common to store it as an 

auxiliary database. 

USER USER 

Multi-DBMs Layer Multi-DBMs Layer 

Component 
DBMS 

Component 
DBMS 

Component 
DBMS 

Component 
DBMS 



Chapter Three                                                           Multi‐Database Architectures 
 

61 

The queries submitted to the component DBMSs are processed following 

decomposition optimization and execution steps. The decomposition step 

involves the simplification of a user query that is specified in some relational 

calculus and its translation to an equivalent relational algebra query over the 

conceptual schema. The optimization step involves the reordering of relational 

algebra operations as well as determination of the best access paths to data. The 

resulting schedule is then executed by the run-time support processor [Ozs 06]. 
Global query on multiple 

 databases at mutiple sites 

 

 

 Control site 

 

Subqueires each on a single 

 database at a single site  

 

 

 

 Multi dbms Subqueries on multiple databases 

layer at each site 

 

 

Aquery that can be processed  

by one dbms 

 

 

 

 Individual  Al gebraic query 

              DBMSS 

 

 

Optimization local queries 

Split 

Fragment 

Translate 

Decomposition 

Optimization 

Data 
Alocation 

Data directory 

Access paths 

Local schema 

Auxiliary 
Database 



Chapter Three                                                           Multi‐Database Architectures 
 

62 

 

Figure (3.11): Query Processing Steps in Multidatabase Systems[Ozs 06] 
 

 

 

       In Figure (3.11) translation information is stored in a separate auxiliary 

database. There is no overriding principle that dictates separation of the global 

directory from the auxiliary database .In fact there are prototype heterogeneous 

systems. The auxiliary database contains information describing how mappings 

from to participating schemas and global schema can be performed. It enables 

conversions between components of the database in different ways. For 

example if the global schema represents temperatures in Fahrenheit degrees but 

a participation database uses Celsius degrees the auxiliary database must 

contain a conversion formula to provide the proper presentation to the global 

user and the local databases.  If the conversion is across types and simple 

formulas cannot perform the translation complete mapping tables could be 

located in the auxiliary as illustrated in the age category relation.  

 

3.10 Transaction Management 
Among all database interoperability problems transaction management 

has probably the most extensively. The challenge is to permit concurrent global 

updates to the component databases without violating their autonomy. In 

general it is not possible to provide the same semantics homogeneous 

distributed DBMSs without violating some autonomy. 

Execution autonomy implies that the global transaction management functions 

are performed independent of the component transaction execution functions. In 

other word the individual component DBMSs more specifically their transaction 

managers are not modified to accommodate global updates. Design autonomy 



Chapter Three                                                           Multi‐Database Architectures 
 

63 

has the additional implication that the transaction managers of each DBMS may 

employ different concurrency control and commit protocols. 

 

 

3.10.1 Transaction and Computation Model 
The MDBS architecture involves a number of DBMSs each with its own 

transaction manager called local transaction managers or (LTMs) and a multi-

DBMS layer on top. The transaction manager of the multi-DBMS layer is called 

the global transaction manager or GTM since it manages the execution of global 

transactions[Ozs06]. 

In a Multidatabase system there are two types of transaction: local transaction 

which are submitted to each DBMS and global transactions which are submitted 

to the multi-DBMS layer as shown in figure (3.12).     

 

 
 
 
 
 
 
 
 
 Site 1                                     Site2 
 

Figure (3.12): Distributed Multi-DBMS Transaction Management 
 
 

3.10.2 Multidatabase Concurrency Control 
  There have been many proposals for ensuring consistency of concurrency 

executing transactions in a Multidatabase environment. The concurrency control 

algorithms maintain the consistency and isolation properties of transactions. 

Given the autonomy of the component DBMSs it is not easy to maintain these 

properties. 

GTM GTM 

LTM-1 LTM-n LTM-1 LTM-n



Chapter Three                                                           Multi‐Database Architectures 
 

64 

Concurrency control algorithms synchronized concurrent transactions by 

ordering their conflicting operations such that a serialization order can be 

maintained among transactions[Ozs06]. 

3.11 Multi Database Integration  
    Database integration involves the process by which information from 

participating databases can be conceptually integrated to form a single cohesive 

definition of a multi database[Ozs 06].  In other word it is the process of 

designing the global conceptual schema. In multi database, a number of 

databases already exist, and the design task involves integrating them into one 

database (server side). The bottom-up approach is suitable of this type of 

environment. The starting point of bottom up design is the individual local 

conceptual schemes. The process consists of integration local schemes in to 

global conceptual schemes.  This type of environment exists primarily in the 

context of heterogeneous data base.  Database integration can occur in two steps 

(figure 3.13) schema translation (or simply translation) and integration   

 

 

 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 

Figure (3.13): Database Integration Process [Ozs 06] 

Database n Database 2 Database 1 

Translator 1 
 

Translator 2 
 

Translator n 

ln S1 ln Sn ln S2 

Integrator 

GCS



Chapter Three                                                           Multi‐Database Architectures 
 

65 

 

     The design process in multi database systems is bottom-up. In other words 

the individual databases actually exist and designing the global conceptual 

schema 

involves integrating these component databases into a multi databases. In the 

first step the component database schemas are translated to a common 

intermediate (InS1, InS2 …InSn) representation[Ozs06]. As a principle it should 

be one that is sufficiently expressive to incorporate the concepts available in all 

the databases that will later be integrated. Clearly the translation step is 

necessary only if the component databases are heterogeneous and each local 

schema may be defined using a different data model. In recent years commercial 

interest has been on the integration of multiple relational databases where this 

translation step can be by past. There is some recent work on the development 

of system federation in which systems with similar data models are integrated 

together (e.g. relational systems are integrated into one conceptual schema and 

perhaps object databases are integrated to another schema) and these integrated 

schemas are combined at a later stage.  In this case the translation step is 

delayed providing increased flexibility for applications to access underlying 

data sources in a manner that is suitable for their needs. In the second step each 

intermediate schema is integrated into a global conceptual schema. In some 

methodologies local external schemas are considered for integration rather than 

local conceptual schemas since it may not be desirable to incorporate the entire 

local conceptual schema in the multi database.  



Chapter Four                                                            The Proposed System Design 

72 

Chapter Four 

The Proposed System Design 
 

4.1 The System Components 
      The proposed system based on multi database system which consists of a  

three sites, connected together via a communication network, as shown in 

Figure (4.1).  

      The main components of proposed system in this figure are:- 

1. Master Database-FoxPro / Server: The backend of Multi-Database where the 

entire database is manipulated, managed, and stored.  

2. Database Access / Client: The front-end of Multi-Database where the access 

requests are issued, which is executed under Microsoft Access environment. 

3. Database SQL / Client: The front-end of Multi-Database where the access 

requests are issued, which is executed under Microsoft Visual FoxPro 

environment.  

4. Communication System (CS): It enables the communication between the two 

clients and server. 

 

 

 

 

 

 

 

 

 

 

 



Chapter Four                                                            The Proposed System Design 

73 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (4.1): the Components of the Proposed System 
 
 
  

 
4.2 Heterogeneous or Multi-database System (MDBS) 
      This is a layer on top of an existing DB system that integrates different 

software environments and machine architectures with different DBMSs which 

are all heterogeneous. 

The DBMSs employ different data model (or no models at all) - i.e. hierarchical 

relational network and different DDLs SMLs and may have different 

concurrency control mechanisms and transaction processing environments. 

A multi-database system creates the illusion of logical DB integration without 

requiring physical DB integration. 

 

Communication 
Network

 
 
 
 
 
 
 
 
 
 

Site 1 

CS

Server

Master 

Database

 
 
    
 
 
 
 
 
 
       

Site 3 

CS 

Client

SQL 

 
 
 
 
 
 
 
 
 

 
Site2 

CS 

Access 
Database 

Client



Chapter Four                                                            The Proposed System Design 

74 

Advantages 

1. Extended user capabilities: Users access and share data without the added 

burden of learning the intricacies of different DBMSs. 

2. Pre-existing programs and procedures are still operational in the 

integrated MDBMS. 

3. The common data model used to employ this layer is the relational model 

and in most cases the DMS is SQL. 

4. A complex provision of a common Conceptual Schema: is an integration 

of all conceptual schemata of the heterogeneous DBMSs. 

 

4.3 Transaction Management and Concurrency and 

Serializability 
Two types of transactions Management 

Local transactions executed by each local DBMS and outside of the MDBMS 

system control 

Global transactions executed under the MDBMS system control.  

The MDBMS has NO control over the execution of local transactions. 

Each local DBMS must ensure some concurrency control such as two phase 

locking or timestamps and to ensure that its schedule is serializable and 

avoidance of local deadlocks. 
 

4.4 The System Design 
         The design of this system requires working on three application 

environments:- 

 

 

 

 

 



Chapter Four                                                            The Proposed System Design 

75 

4.4.1 Microsoft Visual FoxPro Environment 
            This application is used to build FoxPro database and allocated at 

(FoxPro) , this site contain Phone system  which database consist of one 

database table such as in Table (4.1). 

 

Table (4.1) FoxPro-Phone Database Table 

 

 

 

 

 

 

4.4.2 Microsoft Access Environment  
          This application is used to build Microsoft Access database and allocated 

at Access Client, this site contain information research system of university, 

which consists of two database tables at this site. Table (4.2) illustrates these 

tables.  

Table (4.2) Access Database-Research Tables 

 

 

 

 

 

 

 

 

 

 

 

  

        

Field Name Field Type 

Name Text 

Mobile Long 

Mail Text 

Address Text 

Field Name Field Type 

 Project Name Text 

Department Text 

Abstract Text 

Supervision Text 

Year Date 

Keywords No. 

Document of Project Text 

Field Name Field Type 

Project Name Text 

Student Name Text 



Chapter Four                                                            The Proposed System Design 

76 

 

 

4.4.3 Microsoft SQL Server 2000 
This DataBase is called  bank (bank).It contains information about people 

accounts and visa card numbers. It contains one table. 

 
          Table (4.3) SQL Database-Research Table    

 
  

 

 

 

 

 

 

 

 

4.4.4 Microsoft Visual Basic Environment. 
         The three sites interfaces built in Visual Basic Environment; Visual Basic 

environment provides a wealth of tools for creating and accessing database on 

both individual and networks. The major these tools it listed below:- 

 

I. Data controls 

          The Visual Basic data control is the control used to gain access to 

database tables.  You can have more than one data control in your program and 

more than one data control on a single form. Bound data controls are the same 

as any other Visual Basic control objects, except that they have been given 

additional properties, events, and methods that allow you to "bind" them directly 

Field Name Description 

 P- Name Person Name 

P-account-id Account number of person 

P-password Account password person 

P-visa Visa card number of person 

P-account Account Value (amount of  money) of person 



Chapter Four                                                            The Proposed System Design 

77 

to one or more data tables. This binding makes it easy to create data-aware input 

and display 

objects that you can use to perform data input and display with very little 

program code.  

The data control may be gives access to database without any programming; 

you can set a few properties of the control and use regular controls such as 

textboxes to display the values of the fields in the database. Using bound 

controls simplifies your programming chores a great deal. Most bound controls 

automatically handle the various chores related to processing data entry and 

display for databases. The bound controls make it easy to write Visual Basic 

programs that handle all (or nearly all) of the following processes:  

1. Loading data from the database into a Visual Basic data object. 

2. Selecting the data record(s) requested by the user. 

3. Loading form controls with values in the requested record(s). 

4. Trapping simple user input errors. 

5. Updating the data object with modified data from the form controls. 

 

II. DataEnvironment 

         DataEnvironment component lets you design a connection to database and 

retrieve desired records. With DataEnvironment visual Basic application sees 

three objects: 

1. A Connection Object, which establishes a connection to the database, but it 

a local file or a remote SQL server. 

2. A Command Object, which executes commands against the database. 

3. A RecordSet Object, which holds the records retrieved from the database 

or records to be updated on the database. 

 

III. Data Access Objects (DAO) 

           The Data control provides a means of quickly developing database 

applications with little or no code, but it limits your access to the underlying 



Chapter Four                                                            The Proposed System Design 

78 

database. DAO is a structure of objects for accessing databases through your 

code.  

All the functionality of the data control is also available to your code, through 

the DAO; thus, using DAO requires more coding than using the Data control, it 

offers complete programmatic access to everything in the database, as well as 

significantly greater flexibility.  

 

IV. Crystal Reports Pro 

         Crystal Reports Pro is a complete program that helps you define reports, 

save their definitions to disk, and then run these reports against databases to 

create final printouts. Crystal Reports Pro has an added feature that lets you run 

the final reports from within your Visual Basic 6 application using the Crystal 

Reports Pro control, which ships with Visual Basic 6. 

        Crystal Reports Pro is a banded report writer. A banded report writer treats 

all output as "bands" of data. Each band has its own processes (such as 

functions it performs) and settings (properties) that you can manipulate in order 

to create the report layout and behaviors you need. Here are the main bands in 

Crystal Reports Pro. 

1. The header and footer bands.  

2. The detail band. 

 

4.5 The Main Block Diagram of Proposed System 

    This section provides important flowcharts that illustrate the work structure 

and the internal design of the proposed system. The system is software program 

that  

connect and manage more than data source in one time, in our proposed system 

it connect to three databases (Microsoft Access, Microsoft Visual FoxPro 

database and Microsoft SQL Server 2000 database). The managements 

represent the main database operations which are (insert, delete, update, search, 

filtering and reports) 



Chapter Four                                                            The Proposed System Design 

79 

Figure (4.2) and (4.3) illustrate the main block diagram of the proposed system. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure (4.2) Integration and Translation Schema 
 
Schema Integration  

1. Preintegration: identify the keys and defines the ordering of the binary 
processing approach. 

2. Comparison: Identification of naming and structural conflicts. 
3. Conformation: Resolution of the naming and structural conflicts. 
4. Restructuration and Merging of the different intermediate schema to the 

global conceptual scheme (GCS) 
 

Schema translation means the translation of the participating local schemes into 
a common intermediate canonical representation  

1. Schema translation is the task of mapping one schema to another. 

Global Schema Design

Schema Integration 

Translator 
1 

Translator 
2 

Translator 
n 

Database 
1 

Database 
2 

Database 
n 

 
 
 
 
 
 
 
 
 
 

Site 1 

CS

Server

Master 

Database

 
 
    
 
 

 
 
 
 
       

CS 

Client

SQL 

 
 
 
 
 
 
 
 
 

 
Site2 

CS 

Access 
Database

Client



Chapter Four                                                            The Proposed System Design 

80 

2. Requires the specification of the target data model for the global 
conceptual schema  

3. Some rare approaches did merge the translation and integration phase, but 
increases the complexity of the whole process. 

 
 
 
 
 
 
 
 
 Fox pro 

Connection 
 

 
Access ODBC SQL 
Connection Connection Connection 
 
 
 DAO 

 Connection  
                                                                                           
 
 

Figure (4.3) proposed system Architecture 
 
 

4.6.1 Master Database Flowchart 
           The main operations and real work of this project are manipulated at this 

site. The ODBC used to open the database from the master. The DAO used to 

design new database (Mastering database), this new database can be saved as 

binary file that contain all the required information, to retrieving from both 

sites. The Figure (4.4) shows the main flowchart for the Master database design. 

This site contains main menu of the proposed system, the user can interactive 

with this main menu by followed these steps: 

1. The user must open different types of databases then selects the required 

tables. 

2. The system will be analysis this database tables. The fields’ names, 

Description of those tables are determined and displayed.  

3. The user can verify connection between this different types database master. 

Access 
DataBase 
research. 

mdb

SQl Server 
2000 

E-Bank 

Fox Pro 
DataBase 
Phone.dbf 

Open DataBase Connectivity (ODBC) 

 Data Access Object (DAO)

Visual Basic 
Main -VBP



Chapter Four                                                            The Proposed System Design 

81 

 

NO NO 

YES

YES

NO 

4. If there are duplicated exist in the databases, the system will ignore it. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure (4.4) Master DB Server Flowchart 

 

Display field name, 
Description  

Ignore   

N <= 6 
End of 
file

Test 
duplicate

N = N+1 

Verify connection

Determine data 
source

Analysis table 

Open   N   DB 

N = 1 

Start 

End

Select required 
table



Chapter Four                                                            The Proposed System Design 

82 

4.6.2 Access Client flowchart 
          ActiveX data control is used to open Access database and to bind with it 

tables. In this section, dedicated to explain the flowchart of Access Client 

design, as shown in  Figure (4.5), that illustrate execute and perform most 

important operations of Research proposed system, step by step:  

1. Select Access database. 

2. The required database table must be determined. 

3. The user can perform the necessary operations on the opening database 

(Adding New Record, Delete Record, Searching Record, and the Exit of the 

System). 

5. If the user selects Add operation, the user can add a new record to the 

database table. 

6. If the user selects Delete operation, the user can delete the old record from the 

database table. 

7. If the user selects Query operation, the user can search on this database table; 

by selecting field name, certain operator, he can enter the compared value and 

make search to show required records. 

8. Finally, when the user selects Exit, he can quit from this system. 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter Four                                                            The Proposed System Design 

83 

YES

YES

YES

YES 

YES 

NO 
NO 

No

YES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.5) Access Client flowchart 

 

 

Start 

Determine required 
table 

Open Access DB 

DELETE     
Processing 

ADD 
 Processing 

Choose 
DELET 
operation

Choose 
ADD 

operation

Enter compared 
value

Select field name 

Choose 
Exit 

 

Choose 
SEARCH 
operation 

Make search 

Select   certain 
operator 

Show required 
records

End 



Chapter Four                                                            The Proposed System Design 

84 

4.6.3 FoxPro Client Flowchart      
           Data Environment control is used to open FoxPro database and to 

manipulate the operations that performed on the table of FoxPro database. 

Figure (4.6) shows that flowchart of FoxPro Client design. The database 

operations are: Add Database, Delete Database, Update Database, Perform 

Report, Searching Record, Exit of the System. To explain the idea of the 

proposed university salary system at this site, and to execute and perform most 

important operations see, notice following steps:  

1. The user must determine the database source, and the required table. 

 After the user is completing successful all above steps, the main menu screen 

of this system will appear. 

2. If the user selects Add new record, a blank record will display, the user must 

fill this blank with the required information. 

3. If the user selects Delete record, the user can delete the old record from this 

database table. 

4. If the user selects Update record, the users can update any existing record in 

this database table. 

5. If the user select Report database, the user can see final report 

6. If the user selects Search records, the user can search on this database table; 

by SQL search. 

7. If the user selects Exit, the user can quit from this system, else the user is still 

in main menu screen. 

 

 

 

 

 

 

 

 



Chapter Four                                                            The Proposed System Design 

85 

NO 

YES

YES

YESNO 

NO 

YES

NO 

YES 

NO 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (4.6) FoxPro Client Flowchart 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Start 

DELETE required 
Record 

ADD 
 New Record 

Choose 
DELET 
Record 

Choose 
ADD 

Record 

1

UPDATE required 
Records 

Choose 
UPDATE 
Record 

Determine the 
database source  

Determine required 
table 

Choose 
DATA 
Process 

Choose 
Back  

 

Choose 
Exit 

 



Chapter Four                                                            The Proposed System Design 

86 

YES

YES

NO 

NO 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

SQL Search 

Choose 
Exit 

Choose 
REPORT 
Database

Choose 
SEARCH 
Records

1

Show Report 

Figure (4.6) Continued FoxPro Client Flowchart 

End 



Chapter Five                                                   The System Implementation    

88 

Chapter Five 

The System Implementation 
 

 

5.1 Introduction 
 The aim of the proposed system is to implement an application 

interface to connect to three types of database management systems (SQL 

Server, Microsoft Access and Microsoft Visual FoxPro). The main 

program can manage these database through the main operations (Add, 

Delete, Update and Search) on records. This chapter explains in details 

the interfaces of the proposed system. 

5.2 System Requirements 
          In order to make the proposed system working properly, the 

following requirements should be provided. These requirements are 

Hardware and Software as shown : 

5.2.1 Hardware Resources 

The hardware resources required for this project are as follows: 

1. One computer machine used as server. The server computer must have 

minimum a large main memory (to support buffer management) and a 

high capacity disk 85GB (for storing the entire master database). 

2. Two computers used as clients 60GB  minimum for each disk. These 

computers dedicated to the client must be suitable for interaction with the 

user and supported with two applications (Bank/SQL system and   

Research Access system). Figure (5.1) shows these required resources. 

 

 

 

 



Chapter Five                                                   The System Implementation    

89 

Server 

User Client2 Client1 
  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5.1) Required Resources of the proposed system 

 

5.2.2 Software Resources 

       The software resources required for this project are : 

1.Relational Databases (Microsoft Access, Microsoft Visual FoxPro 

environments, SQL Server 2000). 

2. Programming Language development environment (Visual Basic 6). 

3. A Windows based PCs with administrative rights would be required for 

the successful implementation. 

5.3 The Proposed System Implementation 
 The proposed system can be explained in details by describing 

each window interface in details. The proposed system is programmed by 

using Visual Basic 6.0. When the program is running the main Login 

Window interface is appears as shown in figure (5.2). 

 

Research
Main 

system

Phone 
System 

Bank 
System 

Global 
Master 

DB 

Local 
Access 

DB 

Local 
Access 

DB 



Chapter Five                                                   The System Implementation    

90 

 

 

 

 

 

 

 
Figure (5.2):Login Form 

This window used to allow accessing to program by only valid user. 

When the user is valid the main window will appears otherwise an error 

message box will appears to indicate invalid user. 

  The main window of the proposed system contains all the buttons 

that make the connections with other database management systems. 

These buttons are (Access Database – Electronic Library, SQL Server 

2000 – Electronic Bank, FoxPro – Phone Book, About and Exit) as 

shown in  figure (5.3). 

 

 

 

 

 

 

 

 

 

Figure (5.3): The proposed system main window. 

 

 

 



Chapter Five                                                   The System Implementation    

91 

 The Exit button is used for terminating program. The About button 

is used for displaying information window about the proposed system. 

This window is as shown in figure (5.4). 

 

 

 

 

 

 

Figure (5.4):About window 

5.3.1 Connecting to Access Database 

 Connecting to Access database can be done through press (Access 

database – Electronic Library) button from the main window of the 

proposed system. The window of this system is as shown in figure (5.5). 

This window is called Splash screen it display information about this sub 

system. When click any key the main window of this sub system will 

appears as shown in figure (5.5). 

 

 

 

 

 

 

Figure (5.5):Electronic Library Splash Screen 

 The Electronic Library main windows contains four buttons 

(Projects, Queries, About and Exit). The Project button used to manage 

adding and deleting projects from database. While Queries button used to 

manage searching and updating projects in database. This window is 

appears as shown in the  figure (5.6). 



Chapter Five                                                   The System Implementation    

92 

 

 

 

 

 

 

 

Figure (5.6):Electronic Library Window 

 

A – Adding New Project 

 This is done by clicking projects button then Add New. This will 

make project display ADD window like the following windows. It 

contains all fields of the database. 

 

 

 

 

 

 

 

 

 

 

 

Figure (5.7):Add New Window 

B – Deleting Project 

 This is done by clicking projects button then delete. This will make 

project display Delete window like the following windows . 

  



Chapter Five                                                   The System Implementation    

93 

 

 

 

 

 

 

 

 

Figure (5.8):Delete Window 

 

C – Searching and Updating 

 This is done by clicking Queries button then select one method of 

search (by name, student or other fields). This will make project display 

Details window like the following windows in figure (5.9).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5.9):Details Window 

 

 



Chapter Five                                                   The System Implementation    

94 

5.3.2 Connecting to SQL Server 2000 Database 
 Connecting to SQL Server database can be done through press 

(SQL Server 2000 database – Electronic Bank) button from the main 

window of the proposed system. The window of this system is as shown 

in figure (5.10). This window is called Splash screen it display 

information about this sub system. When click any key the main window 

of this sub system will appears as shown in figure (5.10). 

 

 

 

 

 

 

 

Figure (5.10): E-Bank Splash Screen 

The Electronic Bank main window contains many buttons (Add 

new account, Delete account, Update account, Search for account, About 

and Exit). These buttons used for managing user accounts in the 

electronic bank. This window is appears as shown in the following figure. 

 

 

 

 

 

 

 

 

 

Figure (5.11):E-Bank main window Window 



Chapter Five                                                   The System Implementation    

95 

 

A- Add New Account 

 This button used for adding new record account. It display a 

window contains all information required for registering the user account. 

The window of the adding new record is as shown in the figure (5.12).  

 

 

 

 

 

 

 

 

Figure (5.12):Add new account Window 

B- Delete Account 

 This button used for delete record account. It display a window 

contains selecting name of the user account. The window of the deleting 

record is as shown in the figure (5.13).  

 

 

 

 

Figure (5.13):Deleting account Window 

C- Update Account 

 This button used for update record account. It display a window 

contains selecting name of the user account for update. The window of 

the update record is as shown in the figure (5.14). This window also 

contains all database fields that can be changed if required to update 

them. 



Chapter Five                                                   The System Implementation    

96 

 

 

 

 

 

 

 

 

 

Figure (5.14):Update Window 

 

D- Search for Account 

 This button used for Search for account. It display a window 

contains selecting name of the user account. The window of the searching 

record is as shown in the figure (5.15). 

 

 

 

 

Figure (5.15):Search Window 

The result of search can be displayed in details as HTML report and can 

be printer on papers directly. The report is as shown in figure (5.16). 

 

 

 

 

 

Figure (5.16):Report Window 

 



Chapter Five                                                   The System Implementation    

97 

 The other keys are for displaying information about this sub system 

and exit from program. 

 

5.3.3 Connecting To FoxPro Database 
 Connecting to FoxPro database can be done through press (FoxPro 

– Phone Book) button from the main window of the proposed system. 

The window of this system is as shown . This window is called Splash 

screen it display information about this sub system. When click 

 any key the main window of this sub system will appears as shown in 

figure (5.17). 

 

 

 

 

 

 

 

Figure (5.17):Phone Book Splash Screen 
 

The Phone book main window contains many buttons. These 

buttons used for managing address book in the phone book. This window 

is appears as shown in figure (5.18). 

 

 

 

 

 

 

Figure (5.18): Phone Window 



Chapter Five                                                   The System Implementation    

98 

 

A- Add New Contact 

 This button used for adding new record contact. It display a 

window contains all information required for registering the user contact. 

The window of the adding new contact is as shown in the figure (5.19). 

 

 

 

 

 

 

 

  

Figure (5.19):ADD new contact  Window 

B- Delete Contact 

 This button used for delete record account. It display a window 

contains selecting name of the user account. The window of the deleting 

record is as shown in the figure (5.20). 

 

 

 

 

Figure (5.20):Deleting contact Window 

C- Update Contact 

 This button used for update record contact. It display a window 

contains selecting name of the user contact for update. The window of the 

update record is as shown in the figure (5.21). This window also contains 

all database fields that can be changed if required to update them. 

 



Chapter Five                                                   The System Implementation    

99 

 

 

 

 

 

 

 

 

 

Figure (5.21):Update Window 

D- Search for Account 

 This button used for Search for account. It display a window 

contains selecting name of the user account. The window of the searching 

record is as shown in the figure (5.22). 

 

 

 

 

 

 

 

 

 

Figure (5.22):Search Window 

The result of search can be displayed in details as HTML report 

and can be printer on papers directly. The report is as shown in 

figure(5.23). 

 

 



Chapter Five                                                   The System Implementation    

100 

 

 

 

 

 

 

 Figure (5.6):Report Window 

The other keys are for displaying information about this sub system and 

exit from program. 

 

 



Chapter Six                                 Conclusion and Suggestion for Future Works 

102 
 

 
Chapter Six 

Conclusions and Suggestions for Future Work 
 
 

6.1Conclusions 
          The following conclusions are drawn from the design, implementation, 

and experimental results of the proposed system. 

1. Retrieve distributed queries from client workstations. 

2. Decompose the global queries to multiple local sub queries to be 

executed at each of the two sites.  

3. Generate distribute the execution strategies for each site (this includes the   

global site that has to process and route the final result rows to the 

requesting client). 

4. The system is providing almost advantages of DBMS, such as 

availability, reliability, distribution transparency…etc. 

5. The  proposed system build in bottom-up approach using different active 

X data control, related with two different databases (Access, FoxPro); the 

data control that uses in the Access Client design, as well as the Data 

environment is uses in the FoxPro Client design. 
6. It is possible to apply the proposed system on the Wide Area Network 

(WAN) rather than Local Area Network (LAN). 

 

6.2 Suggestions for Future Works 
          The following suggestions made for future work to enhance the proposed 

system: 

1. The project design would have been even far better if somehow the 

Artificial Intelligence used in the project could be updated dynamically.  

The concept of having intelligent database or World Wide Web (WWW) 



Chapter Six                                 Conclusion and Suggestion for Future Works 

103 
 

databases is growing in application with self-learning capacity, as data 

warehouse. Whenever a new source of information is detected; the 

intelligent database come into action and gather the new information.  

 

 

 



References 
 

104 
 

 

REFERENCES 
 
 [Ami 04] Amir A.M. Al-Sameraee, “Proposed Watermarking 

         Technique for Distributed Database Transmission”, 

University  

         Of Technology/ Institute for Postgraduate Studies in 

Informatics, 

          Baghdad 2004. 

[And 01] Andrei Lopatenko UM, Anne Asserson, UiB, Keith G Jeffery 

                    CLRC”CERIF ” Information Retrieval of Research  

                    Information in a Distributed Heterogeneous Environment”   

                   CERIF TG, 2001. 

[Ang 95] Angelo R.Bobak “Distributed and Multidatabase  

                 System”,London,1995 

[Aru 97] Arunk Majunder, “Database Management System”,  1997. 

[Den 02] Denise Ecklund, and Vera Goebel,” Heterogeneous / Federated  

                 /Multi-Database Systems”, 9 October 2002. 

[Ber 89] Bertion.E, G. pelagatti, and L.Sbattella”An Object-Oriented   

                    Approach to the Interconnection of Heterogeneous 

Database”  

                   In Processing of the Workshop on Heterogeneous Database.   

                   NSF, December 1989. 

[Gar 92] Gary W.Hansen, James V.Hansen, “Database Management 

and  

                Design”, Prentice Hall, Inc.Englewood Cliffs, New Jersey   

                07632,Book, USA (1992). 

[Ham 80] M. Hammer and D McLeod.”On Database Mnagement    



References 
 

105 
 

                       System Archiecture”. In Infoted State of the Art Report: 

Data  

                      

                       

                       Design. Pergamon Infotech Limited, Maidenhead, United   

                       Kingdom, 1980.[M.Ta 2000] M.Tamer Özsu,”Distributed   

                      

Database”,www.pmg.lcs.mit.edu/~chmoh/pubs/DDB.pdf.2000,     

                      University of Alberta, 2000. 

[Hen 91] Henry F.Korth, and Abraham Silberschatz, “Database System   

                  Concept”,University of Texas at Austin, McGraw-Hill, Inc, 

1991. 

[Hul 97] Hull, R. “Managing Semantic Heterogeneity in Databases”:   

                  Theoretical Perspective, Proceedings of the sixteenth ACM  

                  SIGACT-SIGMOD-SIGART symposium on Principles of  

                  database systems. 1997  

[Joa 96] Joachim hammer, and dennis mcleod,” An Approach to    

                    Resolving Semantic Heterogeneous in a Federation of   

                   Autonomous,Heterogeneous Database Systems”, Computer   

                   Science Department, University of Southern California. Los  

                   Angeles.  CA 90089-0781, USA, (213)740-4504.1996 

[Kam 01] Kamal Karlapalem,” Distributed Database System”,   

                     Introduction IIIT (Indian Institute of Information  

                     Technology),Gachibowli, Hyderabad 500019, INDIA, 2001. 

[Khu 04] Khurram Allah Ditta” Integrating Information from    

                   Heterogeneous Distributed Databases”, MSc Information   

                   Systems,School of Computing, University of Leeds MSC 

Project      

                   Objectives and Deliverables, (2004). 



References 
 

106 
 

[Nin 03] Nina Dzamashvili, Jellte Jansons, “Physical modeling,   

                  distributed of data”. BLEKINGE TEKNIKA HÖGSKLA 

(BHT),   

                  May 2003. 

 

 

 

[Nor 00] Norio Katayama, Masanori Sugimoto, and Jun Adachi “A  

        Universal Query Interface for Heterogeneous Distributed  

       Digital Libraries” NACSIS (National Center for Science   

       Information  Systems) 2000. 

 [Orf 96] Orfali.R, Harkey.D, and J. Edwards, “Essential Client/Server   

                     Survival Guide”, 2nd edition. Wiley, 1996.  

[Ozs 06]  Tamer Özsu .M & Patrick Valduriez “Principles of Distributed  

                 DataBase System”,2nd Edition,India,2006 

[Pao 99] Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, and Riccardo   

                   Torlone, “Database Systems Concepts, Languages and  

                  Architectures”,   McGraw-Hill, 1999. 

[Ram 00] Ramez Elmasri, Shamkant B. Navaathe,” Fundamentals of    

                     Database Systems”, Addison-Wesley, 2nd edition, USA   

                      2003. 

[Rag 00] Raghu Ramakrishnan “Introduction to Database Systems“,    

                   Um- Madison,(2000). 

[Red 94] Reddy, M. et al.. “A Methodology for Integration of   

                   Heterogeneous Databases”, IEEE Transactions on 

Knowledge    

                   and Data  Engineering, Vol. 6, No 6, Available at:    

                  http://portal.acm.org/portal.cfm, (1994). 

[Rob 88] Robert Ascher Maum, “Network Essentials For  



References 
 

107 
 

                     Dummies “, Los Angeles 1988.  

[Sil 02] Silberschatz Abraham, Korth Henry, F. and  S”Database system   

                concept",  4th Edition, Mc Graw Hill, 2002. 

 

 

 

[Sey 98] Seydim A. Y., "An Overview of Distributed Database  

              Management", www.pmg.lcs.mit.edu/papers /DDBM.pdf,1998 . 

[Ste 85] Stefano. Ceri, “Distributed Database Principles and System”,  

                  McGraw-Hill Book Company, 3rd Printing, 1985. 

[Ste 00] Stefan Leue, “Distributed Systems”,  

                   tele Research Group for Computer Networks and   

                   Telecommunications,  

                 http://www.informatik.uni- freiburg.de/~leue Winter Term 

2000. 

[Tap 03] Tapio Niemi, Marko Niinim¨aki,  and Vesa Sivunen,” 

Integrating   

                    Distributed Heterogeneous Databases and Distributed Grid   

                   Computing” Helsinki Institute of Physics, CERN Offices 

CH-  

                    1211 Gen`eve, Switzerland 2003. 

[Tam 98] Tamer Özsu & Patrick Valduriez, “Distributed DBMS”,   

                     University of Alberta, 1998 .  

[Xue 04] Xuequn. Wu ,and Schmelzer R. “A CORBA-Based 

Architecture   

                     for  Integrating Distributed and Heterogeneous 

Databases”.     

                    RDF/XML  Syntax Specification (Revised) (2004).    

 [Zho 01]  Zhool W.,”Distributed Database System”,     



References 
 

108 
 

                       

www.cs.adfa.oz.au/teaching/studinfo/dsd/DistributedDBS.pdf,   

                        2001. 

 



 

109 
 

a. Dependability - when the server goes down, operations cease  

b. Lack of mature tools - it is a relatively new technology and 

needed tools are lacking  

i. e.g.. Automated client software distribution  

c. Lack of scalability - network operating systems (e.g.. Novell 

Netware, Windows NT Server) are not very scalable.  

d. Higher than anticipated costs  

e. Can cause network congestion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Global Schema 
 
 

Local schema 
 
 

Physical design 



 

110 

 ملخص البحث
      أن قواعد البيانات المعتمدة تتكون من مجموعة مستقلة من قواعد البيانات 
أن الانظمة التي تستخدم لتدير قواعد البيانات المعتمدة تسمى انظمة قواعد البيانات المتعددة 

ان . في هذه الانظمة المعالجات تتعامل وتنفذ تحت سيطرة نظام قاعدة البيانات المتعدد
عالجات المحلية غير المعتمدة ترسل بشكل مباشر ومستقل الى انظمة قواعد بيانات محلية الم

من خلال تطبيقات محلية لذلك ان انظمة قواعد البيانات المتعدد يجب ان توفر ميكانيكية 
للمعالجات العامة وعليه مثل هكذا تعاملات تتطلب حياة طويلة لقواعد بيانات محلية مستقلة 

لك ان انظمة قواعد البيانات المتعددة لا تحوي اي معلومات حول وجود وتنفيذ علاوة على ذ
.اوامر التعاملات المحلية   

الهدف من هذا البحث تقديم مقترح للتصميم الذي يقوم لدمج ومعالجة ثلاثة مصادر من  
ذا ه. تحت بيئة برمجية مختلفة ) العلائقي(قواعد البيانات غير المتجانسة من نفس النموذج 

:بالاضافة الى دراسة موضوع المشروع الذي يهدف الى   
تطوير فهم آيفية الاستفسار عن المصدر المعلومات الغيرمتجانسة المنفذة في بيئة  •

 موزعة 
تحصيل النتائج من خلال مترجم متخصص لفلترت ودمج المعلومات وارجاع الاجوبة  •

 .النهائية للمستخدم او تطبيقات الزبون 
 server)(عن طريق الحاسبه الخادم ) ذف وتحديث وبحثح(تتم عمليات  •

الاخرى فتتولى آل منهم عمليات التحديث والاضافه (client)اما حاسبات الزبائن 
.والبحث الخاص بها  
 
(لقد نفذهذا المشروع على حاسبه  4 ( PENTIUM(1.8)ذات سرعه  MHZ وذاآره

XP بنظام تشغيل (MB 128)خزن  تخدام لغه البرمجه حيث تم تصميم النظام باس
  وقواعد البيانات تم بنائها باستخدام(VISUAL BASIC 6.0)فيجوال بيسك 
(MICROSOFT ACCESS 2000)   و   (MICROSOFT FOXPRO)و 
SQLSERVER)   ( من خلال شبكه من LAN 

 


